Spaces:
Sleeping
Sleeping
import requests | |
import itertools | |
from geopy.distance import geodesic | |
from functools import lru_cache | |
# Replace with your OpenWeather API key | |
API_KEY = '9811dd1481209c64fba6cb2c90f27140' | |
# Interpolation function to get intermediate points between airports | |
def get_intermediate_points(start, end, num_points=2): | |
points = [] | |
lat_step = (end[0] - start[0]) / (num_points + 1) | |
lon_step = (end[1] - start[1]) / (num_points + 1) | |
for i in range(1, num_points + 1): | |
point = (start[0] + lat_step * i, start[1] + lon_step * i) | |
points.append(point) | |
return points | |
# Fetch weather data for a given coordinate | |
def fetch_weather(lat, lon): | |
url = f'http://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={API_KEY}&units=metric' | |
response = requests.get(url) | |
return response.json() | |
# Fetch weather along all possible routes | |
def fetch_weather_for_all_routes(airport_identifiers, airports): | |
route_factors = {} | |
# Generate all possible routes (permutations) | |
for route in itertools.permutations(airport_identifiers, len(airport_identifiers)): | |
route_key = " -> ".join(route) # Key for route factors | |
route_factors[route_key] = [] | |
for i in range(len(route) - 1): | |
start_airport = route[i] | |
end_airport = route[i + 1] | |
start_coords = (airports[start_airport][0], airports[start_airport][1]) | |
end_coords = (airports[end_airport][0], airports[end_airport][1]) | |
# Get 4 intermediate points along the route | |
points = get_intermediate_points(start_coords, end_coords) | |
# Include start and end airport coordinates | |
points.insert(0, start_coords) | |
points.append(end_coords) | |
# Fetch weather for each point | |
weather_descriptions = [] | |
temperatures = [] | |
for point in points: | |
weather = fetch_weather(point[0], point[1]) | |
weather_descriptions.append(weather['weather'][0]['description']) | |
temperatures.append(weather['main']['temp']) | |
# Aggregate weather for the route segment | |
avg_temperature = sum(temperatures) / len(temperatures) | |
most_common_weather = max(set(weather_descriptions), key=weather_descriptions.count) | |
# Store the result in the route_factors dictionary for each route segment | |
segment_key = f"{start_airport} -> {end_airport}" | |
route_factors[route_key].append({ | |
"segment": segment_key, | |
"weather": most_common_weather, | |
"temperature": round(avg_temperature, 2) | |
}) | |
return route_factors | |
# # Example airport coordinates | |
# airports = { | |
# 'SIN': (1.3644, 103.9915), # Singapore Changi Airport | |
# 'LAX': (33.9416, -118.4085), # Los Angeles International Airport | |
# 'JFK': (40.6413, -73.7781), # John F. Kennedy International Airport | |
# 'CDG': (49.0097, 2.5479), # Charles de Gaulle Airport | |
# 'LHR': (51.4700, -0.4543) # London Heathrow Airport | |
# } | |
# airport_identifiers = ['SIN', 'LAX', 'JFK', 'CDG', 'LHR'] # Replace with actual identifiers | |
# # Fetch the weather along all possible routes | |
# route_weather = fetch_weather_for_all_routes(airport_identifiers, airports) | |
# # Display the weather data for each route | |
# for route, factors in route_weather.items(): | |
# print(f"Route: {route}") | |
# for factor in factors: | |
# print(f" Segment: {factor['segment']}, Weather: {factor['weather']}, Temperature: {factor['temperature']} °C") | |
# print() | |