Update app.py
Browse files
app.py
CHANGED
@@ -22,34 +22,47 @@ def analyze_text(text):
|
|
22 |
|
23 |
# Function to process a CSV file and update results live
|
24 |
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def analyze_csv(file):
|
26 |
-
df = pd.read_csv(file.name
|
27 |
texts = df['text'].tolist()
|
28 |
-
|
29 |
results = []
|
30 |
pos_count = neg_count = neu_count = 0
|
31 |
-
|
32 |
for text in texts:
|
33 |
result = classifier(text)[0]
|
34 |
results.append({'text': text, 'sentiment': result['label']})
|
35 |
-
|
36 |
if result['label'] == 'positive':
|
37 |
pos_count += 1
|
38 |
elif result['label'] == 'negative':
|
39 |
neg_count += 1
|
40 |
else:
|
41 |
neu_count += 1
|
42 |
-
|
43 |
# Create a pie chart
|
44 |
labels = 'Positive', 'Negative', 'Neutral'
|
45 |
sizes = [pos_count, neg_count, neu_count]
|
46 |
colors = ['#ff9999','#66b3ff','#99ff99']
|
47 |
fig, ax = plt.subplots()
|
48 |
-
|
49 |
ax.axis('equal')
|
50 |
-
|
51 |
# Update results live
|
52 |
-
yield pd.DataFrame(results), fig
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Gradio interface
|
55 |
with gr.Blocks() as demo:
|
@@ -59,16 +72,21 @@ with gr.Blocks() as demo:
|
|
59 |
text_input = gr.Textbox(label="Enter Text")
|
60 |
text_output = gr.JSON(label="Sentiment Analysis Result")
|
61 |
text_button = gr.Button("Analyze Text")
|
62 |
-
|
63 |
csv_input = gr.File(label="Upload CSV", file_types=['csv'])
|
64 |
csv_output = gr.Dataframe(label="Sentiment Analysis Results")
|
65 |
csv_button = gr.Button("Analyze CSV")
|
66 |
-
|
67 |
with gr.Column():
|
|
|
|
|
|
|
|
|
68 |
csv_chart = gr.Plot(label="Sentiment Distribution")
|
69 |
-
|
70 |
text_button.click(analyze_text, inputs=text_input, outputs=text_output)
|
71 |
-
csv_button.click(analyze_csv, inputs=csv_input, outputs=[csv_output, csv_chart])
|
|
|
72 |
|
73 |
# Launch the Gradio app
|
74 |
demo.launch()
|
|
|
22 |
|
23 |
# Function to process a CSV file and update results live
|
24 |
@spaces.GPU
|
25 |
+
|
26 |
+
# Function to process a single text input
|
27 |
+
def analyze_text(text):
|
28 |
+
result = classifier(text)[0]
|
29 |
+
return result
|
30 |
+
|
31 |
+
# Function to process a CSV file and update results live
|
32 |
def analyze_csv(file):
|
33 |
+
df = pd.read_csv(file.name)
|
34 |
texts = df['text'].tolist()
|
35 |
+
|
36 |
results = []
|
37 |
pos_count = neg_count = neu_count = 0
|
38 |
+
|
39 |
for text in texts:
|
40 |
result = classifier(text)[0]
|
41 |
results.append({'text': text, 'sentiment': result['label']})
|
42 |
+
|
43 |
if result['label'] == 'positive':
|
44 |
pos_count += 1
|
45 |
elif result['label'] == 'negative':
|
46 |
neg_count += 1
|
47 |
else:
|
48 |
neu_count += 1
|
49 |
+
|
50 |
# Create a pie chart
|
51 |
labels = 'Positive', 'Negative', 'Neutral'
|
52 |
sizes = [pos_count, neg_count, neu_count]
|
53 |
colors = ['#ff9999','#66b3ff','#99ff99']
|
54 |
fig, ax = plt.subplots()
|
55 |
+
ax.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
|
56 |
ax.axis('equal')
|
57 |
+
|
58 |
# Update results live
|
59 |
+
yield pd.DataFrame(results), fig, pos_count, neg_count, neu_count
|
60 |
+
|
61 |
+
# Function to save the DataFrame to a CSV file
|
62 |
+
def save_csv(df):
|
63 |
+
file_path = "/mnt/data/sentiment_analysis_results.csv"
|
64 |
+
df.to_csv(file_path, index=False)
|
65 |
+
return file_path
|
66 |
|
67 |
# Gradio interface
|
68 |
with gr.Blocks() as demo:
|
|
|
72 |
text_input = gr.Textbox(label="Enter Text")
|
73 |
text_output = gr.JSON(label="Sentiment Analysis Result")
|
74 |
text_button = gr.Button("Analyze Text")
|
75 |
+
|
76 |
csv_input = gr.File(label="Upload CSV", file_types=['csv'])
|
77 |
csv_output = gr.Dataframe(label="Sentiment Analysis Results")
|
78 |
csv_button = gr.Button("Analyze CSV")
|
79 |
+
|
80 |
with gr.Column():
|
81 |
+
gr.Markdown("## csv Result")
|
82 |
+
pos_count_output = gr.Number(label="Positive Count", value=0)
|
83 |
+
neg_count_output = gr.Number(label="Negative Count", value=0)
|
84 |
+
neu_count_output = gr.Number(label="Neutral Count", value=0)
|
85 |
csv_chart = gr.Plot(label="Sentiment Distribution")
|
86 |
+
|
87 |
text_button.click(analyze_text, inputs=text_input, outputs=text_output)
|
88 |
+
csv_button.click(analyze_csv, inputs=csv_input, outputs=[csv_output, csv_chart, pos_count_output, neg_count_output, neu_count_output])
|
89 |
+
csv_button.click(fn=save_csv, inputs=csv_output, outputs=csv_download)
|
90 |
|
91 |
# Launch the Gradio app
|
92 |
demo.launch()
|