Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,29 +2,38 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipe
|
|
2 |
import torch
|
3 |
import pickle
|
4 |
import streamlit as st
|
|
|
|
|
5 |
from huggingface_hub import InferenceClient
|
|
|
6 |
|
7 |
-
client = InferenceClient(
|
8 |
-
"mistralai/Mistral-7B-Instruct-v0.1"
|
9 |
-
)
|
10 |
|
11 |
|
12 |
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
13 |
|
14 |
-
from translate import Translator
|
15 |
|
16 |
-
def init_session_state():
|
17 |
-
if 'history' not in st.session_state:
|
18 |
-
st.session_state.history = ""
|
19 |
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
generate_kwargs = dict(
|
28 |
temperature=temperature,
|
29 |
max_new_tokens=max_new_tokens,
|
30 |
top_p=top_p,
|
@@ -33,89 +42,83 @@ generate_kwargs = dict(
|
|
33 |
seed=42,
|
34 |
)
|
35 |
|
36 |
-
|
37 |
-
prompt = "<s>"
|
38 |
-
for user_prompt, bot_response in history:
|
39 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
40 |
-
prompt += f" {bot_response}</s> "
|
41 |
-
prompt += f"[INST] {message} [/INST]"
|
42 |
-
return prompt
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
# model_name = "MoritzLaurer/mDeBERTa-v3-base-mnli-xnli"
|
53 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
54 |
-
# model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
55 |
|
56 |
-
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
# # labels2 = ["αποδοχή κληρονομιάς", "αποποίηση", "διαθήκη"]
|
62 |
-
# # labels3 = ["μίσθωση", "κυριότητα", "έξωση", "απλήρωτα νοίκια"]
|
63 |
|
|
|
64 |
|
65 |
-
# titles_astiko = ["γάμος", "αλλοδαπός", "φορολογία", "κληρονομικά", "στέγη", "οικογενειακό", "εμπορικό","κλοπή","απάτη"]
|
66 |
-
# Load dictionary from the file using pickle
|
67 |
with open('my_dict.pickle', 'rb') as file:
|
68 |
dictionary = pickle.load(file)
|
69 |
|
70 |
-
def classify(text,labels):
|
71 |
-
output = classifier(text, labels, multi_label=False)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
text = st.text_input('Enter some text:') # Input field for new text
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
labels = list(dictionary)
|
81 |
|
82 |
-
|
83 |
|
84 |
-
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
|
90 |
-
|
91 |
|
92 |
|
93 |
-
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
|
102 |
-
# Translate the text from Greek to English
|
103 |
-
|
104 |
-
|
105 |
|
106 |
-
|
|
|
107 |
|
|
|
108 |
|
109 |
-
#
|
110 |
-
#
|
|
|
111 |
|
112 |
-
|
113 |
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
history = st.session_state.history
|
118 |
-
prompt = "Based on this info only:" + answer +" ,answer this question, by reasoning step by step:" + text
|
119 |
formatted_prompt = format_prompt(prompt, history)
|
120 |
|
121 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
@@ -125,22 +128,69 @@ if text:
|
|
125 |
output += response.token.text
|
126 |
yield output
|
127 |
return output
|
|
|
128 |
|
129 |
|
130 |
-
# st.text(st.session_state.history)
|
131 |
-
|
132 |
-
# translated_text2 = translator2.translate(out[0]['generated_text'])
|
133 |
-
translated_text2 = translator2.translate(output)
|
134 |
|
135 |
-
st.text(translated_text2)
|
136 |
|
137 |
-
# with st.expander("View Full Output", expanded=False):
|
138 |
-
# st.write(translated_text2, allow_output_mutation=True)
|
139 |
|
140 |
-
# st.text(translated_text2)
|
141 |
-
# st.text("History: " + st.session_state.history)
|
142 |
|
143 |
-
# st.text(output)
|
144 |
-
# st.text(output2)
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import pickle
|
4 |
import streamlit as st
|
5 |
+
from translate import Translator
|
6 |
+
|
7 |
from huggingface_hub import InferenceClient
|
8 |
+
import gradio as gr
|
9 |
|
|
|
|
|
|
|
10 |
|
11 |
|
|
|
12 |
|
|
|
13 |
|
|
|
|
|
|
|
14 |
|
15 |
+
def classify(text,labels):
|
16 |
+
output = classifier(text, labels, multi_label=False)
|
17 |
+
|
18 |
+
return output
|
19 |
|
20 |
+
def format_prompt(message, history):
|
21 |
+
prompt = "<s>"
|
22 |
+
for user_prompt, bot_response in history:
|
23 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
24 |
+
prompt += f" {bot_response}</s> "
|
25 |
+
prompt += f"[INST] {message} [/INST]"
|
26 |
+
return prompt
|
27 |
|
28 |
+
def generate(
|
29 |
+
prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
|
30 |
+
):
|
31 |
+
temperature = float(temperature)
|
32 |
+
if temperature < 1e-2:
|
33 |
+
temperature = 1e-2
|
34 |
+
top_p = float(top_p)
|
35 |
|
36 |
+
generate_kwargs = dict(
|
37 |
temperature=temperature,
|
38 |
max_new_tokens=max_new_tokens,
|
39 |
top_p=top_p,
|
|
|
42 |
seed=42,
|
43 |
)
|
44 |
|
45 |
+
formatted_prompt = format_prompt(prompt, history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
48 |
+
output = ""
|
49 |
|
50 |
+
for response in stream:
|
51 |
+
output += response.token.text
|
52 |
+
yield output
|
53 |
+
return output
|
|
|
|
|
|
|
54 |
|
|
|
55 |
|
56 |
+
client = InferenceClient(
|
57 |
+
"mistralai/Mistral-7B-Instruct-v0.1"
|
58 |
+
)
|
|
|
|
|
59 |
|
60 |
+
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
61 |
|
|
|
|
|
62 |
with open('my_dict.pickle', 'rb') as file:
|
63 |
dictionary = pickle.load(file)
|
64 |
|
|
|
|
|
65 |
|
66 |
+
# text = st.text_input('Enter some text:') # Input field for new text
|
|
|
67 |
|
|
|
68 |
|
69 |
+
# labels = list(dictionary)
|
|
|
|
|
70 |
|
71 |
+
# output = classify(text,labels)
|
72 |
|
73 |
+
# output = output["labels"][0]
|
74 |
|
75 |
+
# labels = list(dictionary[output])
|
76 |
|
77 |
+
# output2 = classify(text,labels)
|
78 |
|
79 |
+
# output2 = output2["labels"][0]
|
80 |
|
81 |
|
82 |
+
# answer = dictionary[output][output2]
|
83 |
|
84 |
+
# # Create a translator object with specified source and target languages
|
85 |
+
# translator = Translator(from_lang='el', to_lang='en')
|
86 |
+
# translator2 = Translator(from_lang='en', to_lang='el')
|
87 |
|
88 |
+
# st.text("H ερώτηση σας σχετίζεται με " + output+ " δίκαιο")
|
89 |
|
90 |
|
91 |
+
# # Translate the text from Greek to English
|
92 |
+
# answer = translator.translate(answer)
|
93 |
+
# text = translator.translate(text)
|
94 |
|
95 |
+
# st.text("Πιο συγκεκριμένα σχετίζεται με " + output2)
|
96 |
+
|
97 |
|
98 |
+
|
99 |
|
100 |
+
# prompt = "Based on this info only:" + answer +" ,answer this question, by reasoning step by step:" + text
|
101 |
+
# formatted_prompt = format_prompt(prompt, history)
|
102 |
+
# translated_text2 = translator2.translate(output)
|
103 |
|
|
|
104 |
|
105 |
+
def generate(
|
106 |
+
prompt, history, temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
|
107 |
+
):
|
108 |
+
temperature = float(temperature)
|
109 |
+
if temperature < 1e-2:
|
110 |
+
temperature = 1e-2
|
111 |
+
top_p = float(top_p)
|
112 |
+
|
113 |
+
generate_kwargs = dict(
|
114 |
+
temperature=temperature,
|
115 |
+
max_new_tokens=max_new_tokens,
|
116 |
+
top_p=top_p,
|
117 |
+
repetition_penalty=repetition_penalty,
|
118 |
+
do_sample=True,
|
119 |
+
seed=42,
|
120 |
+
)
|
121 |
|
|
|
|
|
122 |
formatted_prompt = format_prompt(prompt, history)
|
123 |
|
124 |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
|
|
128 |
output += response.token.text
|
129 |
yield output
|
130 |
return output
|
131 |
+
|
132 |
|
133 |
|
|
|
|
|
|
|
|
|
134 |
|
|
|
135 |
|
|
|
|
|
136 |
|
|
|
|
|
137 |
|
|
|
|
|
138 |
|
139 |
+
additional_inputs=[
|
140 |
+
gr.Slider(
|
141 |
+
label="Temperature",
|
142 |
+
value=0.7,
|
143 |
+
minimum=0.0,
|
144 |
+
maximum=1.0,
|
145 |
+
step=0.05,
|
146 |
+
interactive=True,
|
147 |
+
info="Higher values produce more diverse outputs",
|
148 |
+
),
|
149 |
+
gr.Slider(
|
150 |
+
label="Max new tokens",
|
151 |
+
value=256,
|
152 |
+
minimum=0,
|
153 |
+
maximum=1024,
|
154 |
+
step=64,
|
155 |
+
interactive=True,
|
156 |
+
info="The maximum numbers of new tokens",
|
157 |
+
),
|
158 |
+
gr.Slider(
|
159 |
+
label="Top-p (nucleus sampling)",
|
160 |
+
value=0.95,
|
161 |
+
minimum=0.0,
|
162 |
+
maximum=1,
|
163 |
+
step=0.05,
|
164 |
+
interactive=True,
|
165 |
+
info="Higher values sample more low-probability tokens",
|
166 |
+
),
|
167 |
+
gr.Slider(
|
168 |
+
label="Repetition penalty",
|
169 |
+
value=1.1,
|
170 |
+
minimum=1.0,
|
171 |
+
maximum=2.0,
|
172 |
+
step=0.05,
|
173 |
+
interactive=True,
|
174 |
+
info="Penalize repeated tokens",
|
175 |
+
)
|
176 |
+
]
|
177 |
+
|
178 |
+
css = """
|
179 |
+
#mkd {
|
180 |
+
height: 500px;
|
181 |
+
overflow: auto;
|
182 |
+
border: 1px solid #ccc;
|
183 |
+
}
|
184 |
+
"""
|
185 |
+
|
186 |
+
with gr.Blocks(css=css) as demo:
|
187 |
+
gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>")
|
188 |
+
gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. 💬<h3><center>")
|
189 |
+
gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. 📚<h3><center>")
|
190 |
+
gr.ChatInterface(
|
191 |
+
generate,
|
192 |
+
additional_inputs=additional_inputs,
|
193 |
+
examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]]
|
194 |
+
)
|
195 |
+
|
196 |
+
demo.queue().launch(debug=True)
|