Spaces:
Running
on
Zero
Running
on
Zero
synthio-stable
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- stable/LICENSE +0 -21
- stable/LICENSES/LICENSE_ADP.txt +0 -21
- stable/LICENSES/LICENSE_AURALOSS.txt +0 -201
- stable/LICENSES/LICENSE_DESCRIPT.txt +0 -21
- stable/LICENSES/LICENSE_META.txt +0 -21
- stable/LICENSES/LICENSE_NVIDIA.txt +0 -21
- stable/LICENSES/LICENSE_XTRANSFORMERS.txt +0 -21
- stable/README.md +0 -157
- stable/build/lib/stable_audio_tools/__init__.py +0 -2
- stable/build/lib/stable_audio_tools/data/__init__.py +0 -0
- stable/build/lib/stable_audio_tools/data/dataset.py +0 -654
- stable/build/lib/stable_audio_tools/data/utils.py +0 -96
- stable/build/lib/stable_audio_tools/inference/__init__.py +0 -0
- stable/build/lib/stable_audio_tools/inference/generation.py +0 -274
- stable/build/lib/stable_audio_tools/inference/sampling.py +0 -232
- stable/build/lib/stable_audio_tools/inference/utils.py +0 -35
- stable/build/lib/stable_audio_tools/interface/__init__.py +0 -0
- stable/build/lib/stable_audio_tools/interface/gradio.py +0 -700
- stable/build/lib/stable_audio_tools/models/__init__.py +0 -1
- stable/build/lib/stable_audio_tools/models/adp.py +0 -1588
- stable/build/lib/stable_audio_tools/models/autoencoders.py +0 -794
- stable/build/lib/stable_audio_tools/models/blocks.py +0 -339
- stable/build/lib/stable_audio_tools/models/bottleneck.py +0 -326
- stable/build/lib/stable_audio_tools/models/codebook_patterns.py +0 -545
- stable/build/lib/stable_audio_tools/models/conditioners.py +0 -561
- stable/build/lib/stable_audio_tools/models/diffusion.py +0 -701
- stable/build/lib/stable_audio_tools/models/diffusion_prior.py +0 -79
- stable/build/lib/stable_audio_tools/models/discriminators.py +0 -546
- stable/build/lib/stable_audio_tools/models/dit.py +0 -379
- stable/build/lib/stable_audio_tools/models/factory.py +0 -153
- stable/build/lib/stable_audio_tools/models/lm.py +0 -541
- stable/build/lib/stable_audio_tools/models/lm_backbone.py +0 -159
- stable/build/lib/stable_audio_tools/models/local_attention.py +0 -278
- stable/build/lib/stable_audio_tools/models/pqmf.py +0 -393
- stable/build/lib/stable_audio_tools/models/pretrained.py +0 -25
- stable/build/lib/stable_audio_tools/models/pretransforms.py +0 -258
- stable/build/lib/stable_audio_tools/models/transformer.py +0 -805
- stable/build/lib/stable_audio_tools/models/utils.py +0 -89
- stable/build/lib/stable_audio_tools/models/wavelets.py +0 -82
- stable/build/lib/stable_audio_tools/training/__init__.py +0 -1
- stable/build/lib/stable_audio_tools/training/autoencoders.py +0 -477
- stable/build/lib/stable_audio_tools/training/diffusion.py +0 -1505
- stable/build/lib/stable_audio_tools/training/factory.py +0 -240
- stable/build/lib/stable_audio_tools/training/lm.py +0 -267
- stable/build/lib/stable_audio_tools/training/losses/__init__.py +0 -1
- stable/build/lib/stable_audio_tools/training/losses/auraloss.py +0 -607
- stable/build/lib/stable_audio_tools/training/losses/losses.py +0 -101
- stable/build/lib/stable_audio_tools/training/utils.py +0 -111
- stable/config_adapter.json +0 -124
- stable/convert_json.py +0 -44
stable/LICENSE
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2023 Stability AI
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/LICENSES/LICENSE_ADP.txt
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2022 archinet.ai
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/LICENSES/LICENSE_AURALOSS.txt
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
Apache License
|
2 |
-
Version 2.0, January 2004
|
3 |
-
http://www.apache.org/licenses/
|
4 |
-
|
5 |
-
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
-
|
7 |
-
1. Definitions.
|
8 |
-
|
9 |
-
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
-
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
-
|
12 |
-
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
-
the copyright owner that is granting the License.
|
14 |
-
|
15 |
-
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
-
other entities that control, are controlled by, or are under common
|
17 |
-
control with that entity. For the purposes of this definition,
|
18 |
-
"control" means (i) the power, direct or indirect, to cause the
|
19 |
-
direction or management of such entity, whether by contract or
|
20 |
-
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
-
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
-
|
23 |
-
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
-
exercising permissions granted by this License.
|
25 |
-
|
26 |
-
"Source" form shall mean the preferred form for making modifications,
|
27 |
-
including but not limited to software source code, documentation
|
28 |
-
source, and configuration files.
|
29 |
-
|
30 |
-
"Object" form shall mean any form resulting from mechanical
|
31 |
-
transformation or translation of a Source form, including but
|
32 |
-
not limited to compiled object code, generated documentation,
|
33 |
-
and conversions to other media types.
|
34 |
-
|
35 |
-
"Work" shall mean the work of authorship, whether in Source or
|
36 |
-
Object form, made available under the License, as indicated by a
|
37 |
-
copyright notice that is included in or attached to the work
|
38 |
-
(an example is provided in the Appendix below).
|
39 |
-
|
40 |
-
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
-
form, that is based on (or derived from) the Work and for which the
|
42 |
-
editorial revisions, annotations, elaborations, or other modifications
|
43 |
-
represent, as a whole, an original work of authorship. For the purposes
|
44 |
-
of this License, Derivative Works shall not include works that remain
|
45 |
-
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
-
the Work and Derivative Works thereof.
|
47 |
-
|
48 |
-
"Contribution" shall mean any work of authorship, including
|
49 |
-
the original version of the Work and any modifications or additions
|
50 |
-
to that Work or Derivative Works thereof, that is intentionally
|
51 |
-
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
-
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
-
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
-
means any form of electronic, verbal, or written communication sent
|
55 |
-
to the Licensor or its representatives, including but not limited to
|
56 |
-
communication on electronic mailing lists, source code control systems,
|
57 |
-
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
-
Licensor for the purpose of discussing and improving the Work, but
|
59 |
-
excluding communication that is conspicuously marked or otherwise
|
60 |
-
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
-
|
62 |
-
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
-
on behalf of whom a Contribution has been received by Licensor and
|
64 |
-
subsequently incorporated within the Work.
|
65 |
-
|
66 |
-
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
-
this License, each Contributor hereby grants to You a perpetual,
|
68 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
-
copyright license to reproduce, prepare Derivative Works of,
|
70 |
-
publicly display, publicly perform, sublicense, and distribute the
|
71 |
-
Work and such Derivative Works in Source or Object form.
|
72 |
-
|
73 |
-
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
-
this License, each Contributor hereby grants to You a perpetual,
|
75 |
-
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
-
(except as stated in this section) patent license to make, have made,
|
77 |
-
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
-
where such license applies only to those patent claims licensable
|
79 |
-
by such Contributor that are necessarily infringed by their
|
80 |
-
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
-
with the Work to which such Contribution(s) was submitted. If You
|
82 |
-
institute patent litigation against any entity (including a
|
83 |
-
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
-
or a Contribution incorporated within the Work constitutes direct
|
85 |
-
or contributory patent infringement, then any patent licenses
|
86 |
-
granted to You under this License for that Work shall terminate
|
87 |
-
as of the date such litigation is filed.
|
88 |
-
|
89 |
-
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
-
Work or Derivative Works thereof in any medium, with or without
|
91 |
-
modifications, and in Source or Object form, provided that You
|
92 |
-
meet the following conditions:
|
93 |
-
|
94 |
-
(a) You must give any other recipients of the Work or
|
95 |
-
Derivative Works a copy of this License; and
|
96 |
-
|
97 |
-
(b) You must cause any modified files to carry prominent notices
|
98 |
-
stating that You changed the files; and
|
99 |
-
|
100 |
-
(c) You must retain, in the Source form of any Derivative Works
|
101 |
-
that You distribute, all copyright, patent, trademark, and
|
102 |
-
attribution notices from the Source form of the Work,
|
103 |
-
excluding those notices that do not pertain to any part of
|
104 |
-
the Derivative Works; and
|
105 |
-
|
106 |
-
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
-
distribution, then any Derivative Works that You distribute must
|
108 |
-
include a readable copy of the attribution notices contained
|
109 |
-
within such NOTICE file, excluding those notices that do not
|
110 |
-
pertain to any part of the Derivative Works, in at least one
|
111 |
-
of the following places: within a NOTICE text file distributed
|
112 |
-
as part of the Derivative Works; within the Source form or
|
113 |
-
documentation, if provided along with the Derivative Works; or,
|
114 |
-
within a display generated by the Derivative Works, if and
|
115 |
-
wherever such third-party notices normally appear. The contents
|
116 |
-
of the NOTICE file are for informational purposes only and
|
117 |
-
do not modify the License. You may add Your own attribution
|
118 |
-
notices within Derivative Works that You distribute, alongside
|
119 |
-
or as an addendum to the NOTICE text from the Work, provided
|
120 |
-
that such additional attribution notices cannot be construed
|
121 |
-
as modifying the License.
|
122 |
-
|
123 |
-
You may add Your own copyright statement to Your modifications and
|
124 |
-
may provide additional or different license terms and conditions
|
125 |
-
for use, reproduction, or distribution of Your modifications, or
|
126 |
-
for any such Derivative Works as a whole, provided Your use,
|
127 |
-
reproduction, and distribution of the Work otherwise complies with
|
128 |
-
the conditions stated in this License.
|
129 |
-
|
130 |
-
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
-
any Contribution intentionally submitted for inclusion in the Work
|
132 |
-
by You to the Licensor shall be under the terms and conditions of
|
133 |
-
this License, without any additional terms or conditions.
|
134 |
-
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
-
the terms of any separate license agreement you may have executed
|
136 |
-
with Licensor regarding such Contributions.
|
137 |
-
|
138 |
-
6. Trademarks. This License does not grant permission to use the trade
|
139 |
-
names, trademarks, service marks, or product names of the Licensor,
|
140 |
-
except as required for reasonable and customary use in describing the
|
141 |
-
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
-
|
143 |
-
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
-
agreed to in writing, Licensor provides the Work (and each
|
145 |
-
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
-
implied, including, without limitation, any warranties or conditions
|
148 |
-
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
-
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
-
appropriateness of using or redistributing the Work and assume any
|
151 |
-
risks associated with Your exercise of permissions under this License.
|
152 |
-
|
153 |
-
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
-
whether in tort (including negligence), contract, or otherwise,
|
155 |
-
unless required by applicable law (such as deliberate and grossly
|
156 |
-
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
-
liable to You for damages, including any direct, indirect, special,
|
158 |
-
incidental, or consequential damages of any character arising as a
|
159 |
-
result of this License or out of the use or inability to use the
|
160 |
-
Work (including but not limited to damages for loss of goodwill,
|
161 |
-
work stoppage, computer failure or malfunction, or any and all
|
162 |
-
other commercial damages or losses), even if such Contributor
|
163 |
-
has been advised of the possibility of such damages.
|
164 |
-
|
165 |
-
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
-
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
-
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
-
or other liability obligations and/or rights consistent with this
|
169 |
-
License. However, in accepting such obligations, You may act only
|
170 |
-
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
-
of any other Contributor, and only if You agree to indemnify,
|
172 |
-
defend, and hold each Contributor harmless for any liability
|
173 |
-
incurred by, or claims asserted against, such Contributor by reason
|
174 |
-
of your accepting any such warranty or additional liability.
|
175 |
-
|
176 |
-
END OF TERMS AND CONDITIONS
|
177 |
-
|
178 |
-
APPENDIX: How to apply the Apache License to your work.
|
179 |
-
|
180 |
-
To apply the Apache License to your work, attach the following
|
181 |
-
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
-
replaced with your own identifying information. (Don't include
|
183 |
-
the brackets!) The text should be enclosed in the appropriate
|
184 |
-
comment syntax for the file format. We also recommend that a
|
185 |
-
file or class name and description of purpose be included on the
|
186 |
-
same "printed page" as the copyright notice for easier
|
187 |
-
identification within third-party archives.
|
188 |
-
|
189 |
-
Copyright [yyyy] [name of copyright owner]
|
190 |
-
|
191 |
-
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
-
you may not use this file except in compliance with the License.
|
193 |
-
You may obtain a copy of the License at
|
194 |
-
|
195 |
-
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
-
|
197 |
-
Unless required by applicable law or agreed to in writing, software
|
198 |
-
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
-
See the License for the specific language governing permissions and
|
201 |
-
limitations under the License.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/LICENSES/LICENSE_DESCRIPT.txt
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2023-present, Descript
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/LICENSES/LICENSE_META.txt
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) Meta Platforms, Inc. and affiliates.
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/LICENSES/LICENSE_NVIDIA.txt
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2022 NVIDIA CORPORATION.
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/LICENSES/LICENSE_XTRANSFORMERS.txt
DELETED
@@ -1,21 +0,0 @@
|
|
1 |
-
MIT License
|
2 |
-
|
3 |
-
Copyright (c) 2020 Phil Wang
|
4 |
-
|
5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
-
of this software and associated documentation files (the "Software"), to deal
|
7 |
-
in the Software without restriction, including without limitation the rights
|
8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
-
copies of the Software, and to permit persons to whom the Software is
|
10 |
-
furnished to do so, subject to the following conditions:
|
11 |
-
|
12 |
-
The above copyright notice and this permission notice shall be included in all
|
13 |
-
copies or substantial portions of the Software.
|
14 |
-
|
15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/README.md
DELETED
@@ -1,157 +0,0 @@
|
|
1 |
-
# stable-audio-tools
|
2 |
-
Training and inference code for audio generation models
|
3 |
-
|
4 |
-
# Install
|
5 |
-
|
6 |
-
The library can be installed from PyPI with:
|
7 |
-
```bash
|
8 |
-
$ pip install stable-audio-tools
|
9 |
-
```
|
10 |
-
|
11 |
-
To run the training scripts or inference code, you'll want to clone this repository, navigate to the root, and run:
|
12 |
-
```bash
|
13 |
-
$ pip install .
|
14 |
-
```
|
15 |
-
|
16 |
-
# Requirements
|
17 |
-
Requires PyTorch 2.0 or later for Flash Attention support
|
18 |
-
|
19 |
-
Development for the repo is done in Python 3.8.10
|
20 |
-
|
21 |
-
# Interface
|
22 |
-
|
23 |
-
A basic Gradio interface is provided to test out trained models.
|
24 |
-
|
25 |
-
For example, to create an interface for the [`stable-audio-open-1.0`](https://huggingface.co/stabilityai/stable-audio-open-1.0) model, once you've accepted the terms for the model on Hugging Face, you can run:
|
26 |
-
```bash
|
27 |
-
$ python3 ./run_gradio.py --pretrained-name stabilityai/stable-audio-open-1.0
|
28 |
-
```
|
29 |
-
|
30 |
-
The `run_gradio.py` script accepts the following command line arguments:
|
31 |
-
|
32 |
-
- `--pretrained-name`
|
33 |
-
- Hugging Face repository name for a Stable Audio Tools model
|
34 |
-
- Will prioritize `model.safetensors` over `model.ckpt` in the repo
|
35 |
-
- Optional, used in place of `model-config` and `ckpt-path` when using pre-trained model checkpoints on Hugging Face
|
36 |
-
- `--model-config`
|
37 |
-
- Path to the model config file for a local model
|
38 |
-
- `--ckpt-path`
|
39 |
-
- Path to unwrapped model checkpoint file for a local model
|
40 |
-
- `--pretransform-ckpt-path`
|
41 |
-
- Path to an unwrapped pretransform checkpoint, replaces the pretransform in the model, useful for testing out fine-tuned decoders
|
42 |
-
- Optional
|
43 |
-
- `--share`
|
44 |
-
- If true, a publicly shareable link will be created for the Gradio demo
|
45 |
-
- Optional
|
46 |
-
- `--username` and `--password`
|
47 |
-
- Used together to set a login for the Gradio demo
|
48 |
-
- Optional
|
49 |
-
- `--model-half`
|
50 |
-
- If true, the model weights to half-precision
|
51 |
-
- Optional
|
52 |
-
|
53 |
-
# Training
|
54 |
-
|
55 |
-
## Prerequisites
|
56 |
-
Before starting your training run, you'll need a model config file, as well as a dataset config file. For more information about those, refer to the Configurations section below
|
57 |
-
|
58 |
-
The training code also requires a Weights & Biases account to log the training outputs and demos. Create an account and log in with:
|
59 |
-
```bash
|
60 |
-
$ wandb login
|
61 |
-
```
|
62 |
-
|
63 |
-
## Start training
|
64 |
-
To start a training run, run the `train.py` script in the repo root with:
|
65 |
-
```bash
|
66 |
-
$ python3 ./train.py --dataset-config /path/to/dataset/config --model-config /path/to/model/config --name harmonai_train
|
67 |
-
```
|
68 |
-
|
69 |
-
The `--name` parameter will set the project name for your Weights and Biases run.
|
70 |
-
|
71 |
-
## Training wrappers and model unwrapping
|
72 |
-
`stable-audio-tools` uses PyTorch Lightning to facilitate multi-GPU and multi-node training.
|
73 |
-
|
74 |
-
When a model is being trained, it is wrapped in a "training wrapper", which is a `pl.LightningModule` that contains all of the relevant objects needed only for training. That includes things like discriminators for autoencoders, EMA copies of models, and all of the optimizer states.
|
75 |
-
|
76 |
-
The checkpoint files created during training include this training wrapper, which greatly increases the size of the checkpoint file.
|
77 |
-
|
78 |
-
`unwrap_model.py` in the repo root will take in a wrapped model checkpoint and save a new checkpoint file including only the model itself.
|
79 |
-
|
80 |
-
That can be run with from the repo root with:
|
81 |
-
```bash
|
82 |
-
$ python3 ./unwrap_model.py --model-config /path/to/model/config --ckpt-path /path/to/wrapped/ckpt --name model_unwrap
|
83 |
-
```
|
84 |
-
|
85 |
-
Unwrapped model checkpoints are required for:
|
86 |
-
- Inference scripts
|
87 |
-
- Using a model as a pretransform for another model (e.g. using an autoencoder model for latent diffusion)
|
88 |
-
- Fine-tuning a pre-trained model with a modified configuration (i.e. partial initialization)
|
89 |
-
|
90 |
-
## Fine-tuning
|
91 |
-
Fine-tuning a model involves continuning a training run from a pre-trained checkpoint.
|
92 |
-
|
93 |
-
To continue a training run from a wrapped model checkpoint, you can pass in the checkpoint path to `train.py` with the `--ckpt-path` flag.
|
94 |
-
|
95 |
-
To start a fresh training run using a pre-trained unwrapped model, you can pass in the unwrapped checkpoint to `train.py` with the `--pretrained-ckpt-path` flag.
|
96 |
-
|
97 |
-
## Additional training flags
|
98 |
-
|
99 |
-
Additional optional flags for `train.py` include:
|
100 |
-
- `--config-file`
|
101 |
-
- The path to the defaults.ini file in the repo root, required if running `train.py` from a directory other than the repo root
|
102 |
-
- `--pretransform-ckpt-path`
|
103 |
-
- Used in various model types such as latent diffusion models to load a pre-trained autoencoder. Requires an unwrapped model checkpoint.
|
104 |
-
- `--save-dir`
|
105 |
-
- The directory in which to save the model checkpoints
|
106 |
-
- `--checkpoint-every`
|
107 |
-
- The number of steps between saved checkpoints.
|
108 |
-
- *Default*: 10000
|
109 |
-
- `--batch-size`
|
110 |
-
- Number of samples per-GPU during training. Should be set as large as your GPU VRAM will allow.
|
111 |
-
- *Default*: 8
|
112 |
-
- `--num-gpus`
|
113 |
-
- Number of GPUs per-node to use for training
|
114 |
-
- *Default*: 1
|
115 |
-
- `--num-nodes`
|
116 |
-
- Number of GPU nodes being used for training
|
117 |
-
- *Default*: 1
|
118 |
-
- `--accum-batches`
|
119 |
-
- Enables and sets the number of batches for gradient batch accumulation. Useful for increasing effective batch size when training on smaller GPUs.
|
120 |
-
- `--strategy`
|
121 |
-
- Multi-GPU strategy for distributed training. Setting to `deepspeed` will enable DeepSpeed ZeRO Stage 2.
|
122 |
-
- *Default*: `ddp` if `--num_gpus` > 1, else None
|
123 |
-
- `--precision`
|
124 |
-
- floating-point precision to use during training
|
125 |
-
- *Default*: 16
|
126 |
-
- `--num-workers`
|
127 |
-
- Number of CPU workers used by the data loader
|
128 |
-
- `--seed`
|
129 |
-
- RNG seed for PyTorch, helps with deterministic training
|
130 |
-
|
131 |
-
# Configurations
|
132 |
-
Training and inference code for `stable-audio-tools` is based around JSON configuration files that define model hyperparameters, training settings, and information about your training dataset.
|
133 |
-
|
134 |
-
## Model config
|
135 |
-
The model config file defines all of the information needed to load a model for training or inference. It also contains the training configuration needed to fine-tune a model or train from scratch.
|
136 |
-
|
137 |
-
The following properties are defined in the top level of the model configuration:
|
138 |
-
|
139 |
-
- `model_type`
|
140 |
-
- The type of model being defined, currently limited to one of `"autoencoder", "diffusion_uncond", "diffusion_cond", "diffusion_cond_inpaint", "diffusion_autoencoder", "lm"`.
|
141 |
-
- `sample_size`
|
142 |
-
- The length of the audio provided to the model during training, in samples. For diffusion models, this is also the raw audio sample length used for inference.
|
143 |
-
- `sample_rate`
|
144 |
-
- The sample rate of the audio provided to the model during training, and generated during inference, in Hz.
|
145 |
-
- `audio_channels`
|
146 |
-
- The number of channels of audio provided to the model during training, and generated during inference. Defaults to 2. Set to 1 for mono.
|
147 |
-
- `model`
|
148 |
-
- The specific configuration for the model being defined, varies based on `model_type`
|
149 |
-
- `training`
|
150 |
-
- The training configuration for the model, varies based on `model_type`. Provides parameters for training as well as demos.
|
151 |
-
|
152 |
-
## Dataset config
|
153 |
-
`stable-audio-tools` currently supports two kinds of data sources: local directories of audio files, and WebDataset datasets stored in Amazon S3. More information can be found in [the dataset config documentation](docs/datasets.md)
|
154 |
-
|
155 |
-
# Todo
|
156 |
-
- [ ] Add troubleshooting section
|
157 |
-
- [ ] Add contribution guidelines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/__init__.py
DELETED
@@ -1,2 +0,0 @@
|
|
1 |
-
from .models.factory import create_model_from_config, create_model_from_config_path
|
2 |
-
from .models.pretrained import get_pretrained_model
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/data/__init__.py
DELETED
File without changes
|
stable/build/lib/stable_audio_tools/data/dataset.py
DELETED
@@ -1,654 +0,0 @@
|
|
1 |
-
import importlib
|
2 |
-
import numpy as np
|
3 |
-
import io
|
4 |
-
import os
|
5 |
-
import posixpath
|
6 |
-
import random
|
7 |
-
import re
|
8 |
-
import subprocess
|
9 |
-
import time
|
10 |
-
import torch
|
11 |
-
import torchaudio
|
12 |
-
import webdataset as wds
|
13 |
-
|
14 |
-
from aeiou.core import is_silence
|
15 |
-
from os import path
|
16 |
-
from pedalboard.io import AudioFile
|
17 |
-
from torchaudio import transforms as T
|
18 |
-
from typing import Optional, Callable, List
|
19 |
-
|
20 |
-
from .utils import Stereo, Mono, PhaseFlipper, PadCrop_Normalized_T
|
21 |
-
|
22 |
-
AUDIO_KEYS = ("flac", "wav", "mp3", "m4a", "ogg", "opus")
|
23 |
-
|
24 |
-
# fast_scandir implementation by Scott Hawley originally in https://github.com/zqevans/audio-diffusion/blob/main/dataset/dataset.py
|
25 |
-
|
26 |
-
def fast_scandir(
|
27 |
-
dir:str, # top-level directory at which to begin scanning
|
28 |
-
ext:list, # list of allowed file extensions,
|
29 |
-
#max_size = 1 * 1000 * 1000 * 1000 # Only files < 1 GB
|
30 |
-
):
|
31 |
-
"very fast `glob` alternative. from https://stackoverflow.com/a/59803793/4259243"
|
32 |
-
subfolders, files = [], []
|
33 |
-
ext = ['.'+x if x[0]!='.' else x for x in ext] # add starting period to extensions if needed
|
34 |
-
try: # hope to avoid 'permission denied' by this try
|
35 |
-
for f in os.scandir(dir):
|
36 |
-
try: # 'hope to avoid too many levels of symbolic links' error
|
37 |
-
if f.is_dir():
|
38 |
-
subfolders.append(f.path)
|
39 |
-
elif f.is_file():
|
40 |
-
file_ext = os.path.splitext(f.name)[1].lower()
|
41 |
-
is_hidden = os.path.basename(f.path).startswith(".")
|
42 |
-
|
43 |
-
if file_ext in ext and not is_hidden:
|
44 |
-
files.append(f.path)
|
45 |
-
except:
|
46 |
-
pass
|
47 |
-
except:
|
48 |
-
pass
|
49 |
-
|
50 |
-
for dir in list(subfolders):
|
51 |
-
sf, f = fast_scandir(dir, ext)
|
52 |
-
subfolders.extend(sf)
|
53 |
-
files.extend(f)
|
54 |
-
return subfolders, files
|
55 |
-
|
56 |
-
def keyword_scandir(
|
57 |
-
dir: str, # top-level directory at which to begin scanning
|
58 |
-
ext: list, # list of allowed file extensions
|
59 |
-
keywords: list, # list of keywords to search for in the file name
|
60 |
-
):
|
61 |
-
"very fast `glob` alternative. from https://stackoverflow.com/a/59803793/4259243"
|
62 |
-
subfolders, files = [], []
|
63 |
-
# make keywords case insensitive
|
64 |
-
keywords = [keyword.lower() for keyword in keywords]
|
65 |
-
# add starting period to extensions if needed
|
66 |
-
ext = ['.'+x if x[0] != '.' else x for x in ext]
|
67 |
-
banned_words = ["paxheader", "__macosx"]
|
68 |
-
try: # hope to avoid 'permission denied' by this try
|
69 |
-
for f in os.scandir(dir):
|
70 |
-
try: # 'hope to avoid too many levels of symbolic links' error
|
71 |
-
if f.is_dir():
|
72 |
-
subfolders.append(f.path)
|
73 |
-
elif f.is_file():
|
74 |
-
is_hidden = f.name.split("/")[-1][0] == '.'
|
75 |
-
has_ext = os.path.splitext(f.name)[1].lower() in ext
|
76 |
-
name_lower = f.name.lower()
|
77 |
-
has_keyword = any(
|
78 |
-
[keyword in name_lower for keyword in keywords])
|
79 |
-
has_banned = any(
|
80 |
-
[banned_word in name_lower for banned_word in banned_words])
|
81 |
-
if has_ext and has_keyword and not has_banned and not is_hidden and not os.path.basename(f.path).startswith("._"):
|
82 |
-
files.append(f.path)
|
83 |
-
except:
|
84 |
-
pass
|
85 |
-
except:
|
86 |
-
pass
|
87 |
-
|
88 |
-
for dir in list(subfolders):
|
89 |
-
sf, f = keyword_scandir(dir, ext, keywords)
|
90 |
-
subfolders.extend(sf)
|
91 |
-
files.extend(f)
|
92 |
-
return subfolders, files
|
93 |
-
|
94 |
-
def get_audio_filenames(
|
95 |
-
paths: list, # directories in which to search
|
96 |
-
keywords=None,
|
97 |
-
exts=['.wav', '.mp3', '.flac', '.ogg', '.aif', '.opus']
|
98 |
-
):
|
99 |
-
"recursively get a list of audio filenames"
|
100 |
-
filenames = []
|
101 |
-
if type(paths) is str:
|
102 |
-
paths = [paths]
|
103 |
-
for path in paths: # get a list of relevant filenames
|
104 |
-
if keywords is not None:
|
105 |
-
subfolders, files = keyword_scandir(path, exts, keywords)
|
106 |
-
else:
|
107 |
-
subfolders, files = fast_scandir(path, exts)
|
108 |
-
filenames.extend(files)
|
109 |
-
return filenames
|
110 |
-
|
111 |
-
class LocalDatasetConfig:
|
112 |
-
def __init__(
|
113 |
-
self,
|
114 |
-
id: str,
|
115 |
-
path: str,
|
116 |
-
custom_metadata_fn: Optional[Callable[[str], str]] = None
|
117 |
-
):
|
118 |
-
self.id = id
|
119 |
-
self.path = path
|
120 |
-
self.custom_metadata_fn = custom_metadata_fn
|
121 |
-
|
122 |
-
class SampleDataset(torch.utils.data.Dataset):
|
123 |
-
def __init__(
|
124 |
-
self,
|
125 |
-
configs,
|
126 |
-
sample_size=65536,
|
127 |
-
sample_rate=48000,
|
128 |
-
keywords=None,
|
129 |
-
random_crop=True,
|
130 |
-
force_channels="stereo"
|
131 |
-
):
|
132 |
-
super().__init__()
|
133 |
-
self.filenames = []
|
134 |
-
|
135 |
-
self.augs = torch.nn.Sequential(
|
136 |
-
PhaseFlipper(),
|
137 |
-
)
|
138 |
-
|
139 |
-
self.root_paths = []
|
140 |
-
|
141 |
-
self.pad_crop = PadCrop_Normalized_T(sample_size, sample_rate, randomize=random_crop)
|
142 |
-
|
143 |
-
self.force_channels = force_channels
|
144 |
-
|
145 |
-
self.encoding = torch.nn.Sequential(
|
146 |
-
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
|
147 |
-
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
|
148 |
-
)
|
149 |
-
|
150 |
-
self.sr = sample_rate
|
151 |
-
|
152 |
-
self.custom_metadata_fns = {}
|
153 |
-
|
154 |
-
for config in configs:
|
155 |
-
self.root_paths.append(config.path)
|
156 |
-
self.filenames.extend(get_audio_filenames(config.path, keywords))
|
157 |
-
if config.custom_metadata_fn is not None:
|
158 |
-
self.custom_metadata_fns[config.path] = config.custom_metadata_fn
|
159 |
-
|
160 |
-
print(f'Found {len(self.filenames)} files')
|
161 |
-
|
162 |
-
def load_file(self, filename):
|
163 |
-
ext = filename.split(".")[-1]
|
164 |
-
|
165 |
-
if ext == "mp3":
|
166 |
-
with AudioFile(filename) as f:
|
167 |
-
audio = f.read(f.frames)
|
168 |
-
audio = torch.from_numpy(audio)
|
169 |
-
in_sr = f.samplerate
|
170 |
-
else:
|
171 |
-
audio, in_sr = torchaudio.load(filename, format=ext)
|
172 |
-
|
173 |
-
if in_sr != self.sr:
|
174 |
-
resample_tf = T.Resample(in_sr, self.sr)
|
175 |
-
audio = resample_tf(audio)
|
176 |
-
|
177 |
-
return audio
|
178 |
-
|
179 |
-
def __len__(self):
|
180 |
-
return len(self.filenames)
|
181 |
-
|
182 |
-
def __getitem__(self, idx):
|
183 |
-
audio_filename = self.filenames[idx]
|
184 |
-
try:
|
185 |
-
start_time = time.time()
|
186 |
-
audio = self.load_file(audio_filename)
|
187 |
-
|
188 |
-
audio, t_start, t_end, seconds_start, seconds_total, padding_mask = self.pad_crop(audio)
|
189 |
-
|
190 |
-
# Run augmentations on this sample (including random crop)
|
191 |
-
if self.augs is not None:
|
192 |
-
audio = self.augs(audio)
|
193 |
-
|
194 |
-
audio = audio.clamp(-1, 1)
|
195 |
-
|
196 |
-
# Encode the file to assist in prediction
|
197 |
-
if self.encoding is not None:
|
198 |
-
audio = self.encoding(audio)
|
199 |
-
|
200 |
-
info = {}
|
201 |
-
|
202 |
-
info["path"] = audio_filename
|
203 |
-
|
204 |
-
for root_path in self.root_paths:
|
205 |
-
if root_path in audio_filename:
|
206 |
-
info["relpath"] = path.relpath(audio_filename, root_path)
|
207 |
-
|
208 |
-
info["timestamps"] = (t_start, t_end)
|
209 |
-
info["seconds_start"] = seconds_start
|
210 |
-
info["seconds_total"] = seconds_total
|
211 |
-
info["padding_mask"] = padding_mask
|
212 |
-
|
213 |
-
end_time = time.time()
|
214 |
-
|
215 |
-
info["load_time"] = end_time - start_time
|
216 |
-
|
217 |
-
for custom_md_path in self.custom_metadata_fns.keys():
|
218 |
-
if custom_md_path in audio_filename:
|
219 |
-
custom_metadata_fn = self.custom_metadata_fns[custom_md_path]
|
220 |
-
custom_metadata = custom_metadata_fn(info, audio)
|
221 |
-
info.update(custom_metadata)
|
222 |
-
|
223 |
-
if "__reject__" in info and info["__reject__"]:
|
224 |
-
return self[random.randrange(len(self))]
|
225 |
-
|
226 |
-
return (audio, info)
|
227 |
-
except Exception as e:
|
228 |
-
print(f'Couldn\'t load file {audio_filename}: {e}')
|
229 |
-
return self[random.randrange(len(self))]
|
230 |
-
|
231 |
-
def group_by_keys(data, keys=wds.tariterators.base_plus_ext, lcase=True, suffixes=None, handler=None):
|
232 |
-
"""Return function over iterator that groups key, value pairs into samples.
|
233 |
-
:param keys: function that splits the key into key and extension (base_plus_ext)
|
234 |
-
:param lcase: convert suffixes to lower case (Default value = True)
|
235 |
-
"""
|
236 |
-
current_sample = None
|
237 |
-
for filesample in data:
|
238 |
-
assert isinstance(filesample, dict)
|
239 |
-
fname, value = filesample["fname"], filesample["data"]
|
240 |
-
prefix, suffix = keys(fname)
|
241 |
-
if wds.tariterators.trace:
|
242 |
-
print(
|
243 |
-
prefix,
|
244 |
-
suffix,
|
245 |
-
current_sample.keys() if isinstance(current_sample, dict) else None,
|
246 |
-
)
|
247 |
-
if prefix is None:
|
248 |
-
continue
|
249 |
-
if lcase:
|
250 |
-
suffix = suffix.lower()
|
251 |
-
if current_sample is None or prefix != current_sample["__key__"]:
|
252 |
-
if wds.tariterators.valid_sample(current_sample):
|
253 |
-
yield current_sample
|
254 |
-
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
|
255 |
-
if suffix in current_sample:
|
256 |
-
print(f"{fname}: duplicate file name in tar file {suffix} {current_sample.keys()}")
|
257 |
-
if suffixes is None or suffix in suffixes:
|
258 |
-
current_sample[suffix] = value
|
259 |
-
if wds.tariterators.valid_sample(current_sample):
|
260 |
-
yield current_sample
|
261 |
-
|
262 |
-
wds.tariterators.group_by_keys = group_by_keys
|
263 |
-
|
264 |
-
# S3 code and WDS preprocessing code based on implementation by Scott Hawley originally in https://github.com/zqevans/audio-diffusion/blob/main/dataset/dataset.py
|
265 |
-
|
266 |
-
def get_s3_contents(dataset_path, s3_url_prefix=None, filter='', recursive=True, debug=False, profile=None):
|
267 |
-
"""
|
268 |
-
Returns a list of full S3 paths to files in a given S3 bucket and directory path.
|
269 |
-
"""
|
270 |
-
# Ensure dataset_path ends with a trailing slash
|
271 |
-
if dataset_path != '' and not dataset_path.endswith('/'):
|
272 |
-
dataset_path += '/'
|
273 |
-
# Use posixpath to construct the S3 URL path
|
274 |
-
bucket_path = posixpath.join(s3_url_prefix or '', dataset_path)
|
275 |
-
# Construct the `aws s3 ls` command
|
276 |
-
cmd = ['aws', 's3', 'ls', bucket_path]
|
277 |
-
|
278 |
-
if profile is not None:
|
279 |
-
cmd.extend(['--profile', profile])
|
280 |
-
|
281 |
-
if recursive:
|
282 |
-
# Add the --recursive flag if requested
|
283 |
-
cmd.append('--recursive')
|
284 |
-
|
285 |
-
# Run the `aws s3 ls` command and capture the output
|
286 |
-
run_ls = subprocess.run(cmd, capture_output=True, check=True)
|
287 |
-
# Split the output into lines and strip whitespace from each line
|
288 |
-
contents = run_ls.stdout.decode('utf-8').split('\n')
|
289 |
-
contents = [x.strip() for x in contents if x]
|
290 |
-
# Remove the timestamp from lines that begin with a timestamp
|
291 |
-
contents = [re.sub(r'^\S+\s+\S+\s+\d+\s+', '', x)
|
292 |
-
if re.match(r'^\S+\s+\S+\s+\d+\s+', x) else x for x in contents]
|
293 |
-
# Construct a full S3 path for each file in the contents list
|
294 |
-
contents = [posixpath.join(s3_url_prefix or '', x)
|
295 |
-
for x in contents if not x.endswith('/')]
|
296 |
-
# Apply the filter, if specified
|
297 |
-
if filter:
|
298 |
-
contents = [x for x in contents if filter in x]
|
299 |
-
# Remove redundant directory names in the S3 URL
|
300 |
-
if recursive:
|
301 |
-
# Get the main directory name from the S3 URL
|
302 |
-
main_dir = "/".join(bucket_path.split('/')[3:])
|
303 |
-
# Remove the redundant directory names from each file path
|
304 |
-
contents = [x.replace(f'{main_dir}', '').replace(
|
305 |
-
'//', '/') for x in contents]
|
306 |
-
# Print debugging information, if requested
|
307 |
-
if debug:
|
308 |
-
print("contents = \n", contents)
|
309 |
-
# Return the list of S3 paths to files
|
310 |
-
return contents
|
311 |
-
|
312 |
-
|
313 |
-
def get_all_s3_urls(
|
314 |
-
names=[], # list of all valid [LAION AudioDataset] dataset names
|
315 |
-
# list of subsets you want from those datasets, e.g. ['train','valid']
|
316 |
-
subsets=[''],
|
317 |
-
s3_url_prefix=None, # prefix for those dataset names
|
318 |
-
recursive=True, # recursively list all tar files in all subdirs
|
319 |
-
filter_str='tar', # only grab files with this substring
|
320 |
-
# print debugging info -- note: info displayed likely to change at dev's whims
|
321 |
-
debug=False,
|
322 |
-
profiles={}, # dictionary of profiles for each item in names, e.g. {'dataset1': 'profile1', 'dataset2': 'profile2'}
|
323 |
-
):
|
324 |
-
"get urls of shards (tar files) for multiple datasets in one s3 bucket"
|
325 |
-
urls = []
|
326 |
-
for name in names:
|
327 |
-
# If s3_url_prefix is not specified, assume the full S3 path is included in each element of the names list
|
328 |
-
if s3_url_prefix is None:
|
329 |
-
contents_str = name
|
330 |
-
else:
|
331 |
-
# Construct the S3 path using the s3_url_prefix and the current name value
|
332 |
-
contents_str = posixpath.join(s3_url_prefix, name)
|
333 |
-
if debug:
|
334 |
-
print(f"get_all_s3_urls: {contents_str}:")
|
335 |
-
for subset in subsets:
|
336 |
-
subset_str = posixpath.join(contents_str, subset)
|
337 |
-
if debug:
|
338 |
-
print(f"subset_str = {subset_str}")
|
339 |
-
# Get the list of tar files in the current subset directory
|
340 |
-
profile = profiles.get(name, None)
|
341 |
-
tar_list = get_s3_contents(
|
342 |
-
subset_str, s3_url_prefix=None, recursive=recursive, filter=filter_str, debug=debug, profile=profile)
|
343 |
-
for tar in tar_list:
|
344 |
-
# Escape spaces and parentheses in the tar filename for use in the shell command
|
345 |
-
tar = tar.replace(" ", "\ ").replace(
|
346 |
-
"(", "\(").replace(")", "\)")
|
347 |
-
# Construct the S3 path to the current tar file
|
348 |
-
s3_path = posixpath.join(name, subset, tar) + " -"
|
349 |
-
# Construct the AWS CLI command to download the current tar file
|
350 |
-
if s3_url_prefix is None:
|
351 |
-
request_str = f"pipe:aws s3 --cli-connect-timeout 0 cp {s3_path}"
|
352 |
-
else:
|
353 |
-
request_str = f"pipe:aws s3 --cli-connect-timeout 0 cp {posixpath.join(s3_url_prefix, s3_path)}"
|
354 |
-
if profiles.get(name):
|
355 |
-
request_str += f" --profile {profiles.get(name)}"
|
356 |
-
if debug:
|
357 |
-
print("request_str = ", request_str)
|
358 |
-
# Add the constructed URL to the list of URLs
|
359 |
-
urls.append(request_str)
|
360 |
-
return urls
|
361 |
-
|
362 |
-
|
363 |
-
def log_and_continue(exn):
|
364 |
-
"""Call in an exception handler to ignore any exception, isssue a warning, and continue."""
|
365 |
-
print(f"Handling webdataset error ({repr(exn)}). Ignoring.")
|
366 |
-
return True
|
367 |
-
|
368 |
-
|
369 |
-
def is_valid_sample(sample):
|
370 |
-
has_json = "json" in sample
|
371 |
-
has_audio = "audio" in sample
|
372 |
-
is_silent = is_silence(sample["audio"])
|
373 |
-
is_rejected = "__reject__" in sample["json"] and sample["json"]["__reject__"]
|
374 |
-
|
375 |
-
return has_json and has_audio and not is_silent and not is_rejected
|
376 |
-
|
377 |
-
class S3DatasetConfig:
|
378 |
-
def __init__(
|
379 |
-
self,
|
380 |
-
id: str,
|
381 |
-
s3_path: str,
|
382 |
-
custom_metadata_fn: Optional[Callable[[str], str]] = None,
|
383 |
-
profile: Optional[str] = None,
|
384 |
-
):
|
385 |
-
self.id = id
|
386 |
-
self.path = s3_path
|
387 |
-
self.custom_metadata_fn = custom_metadata_fn
|
388 |
-
self.profile = profile
|
389 |
-
self.urls = []
|
390 |
-
|
391 |
-
def load_data_urls(self):
|
392 |
-
self.urls = get_all_s3_urls(
|
393 |
-
names=[self.path],
|
394 |
-
s3_url_prefix=None,
|
395 |
-
recursive=True,
|
396 |
-
profiles={self.path: self.profile} if self.profile else {},
|
397 |
-
)
|
398 |
-
|
399 |
-
return self.urls
|
400 |
-
|
401 |
-
class LocalWebDatasetConfig:
|
402 |
-
def __init__(
|
403 |
-
self,
|
404 |
-
id: str,
|
405 |
-
path: str,
|
406 |
-
custom_metadata_fn: Optional[Callable[[str], str]] = None,
|
407 |
-
profile: Optional[str] = None,
|
408 |
-
):
|
409 |
-
self.id = id
|
410 |
-
self.path = path
|
411 |
-
self.custom_metadata_fn = custom_metadata_fn
|
412 |
-
self.urls = []
|
413 |
-
|
414 |
-
def load_data_urls(self):
|
415 |
-
|
416 |
-
self.urls = fast_scandir(self.path, ["tar"])[1]
|
417 |
-
|
418 |
-
return self.urls
|
419 |
-
|
420 |
-
def audio_decoder(key, value):
|
421 |
-
# Get file extension from key
|
422 |
-
ext = key.split(".")[-1]
|
423 |
-
|
424 |
-
if ext in AUDIO_KEYS:
|
425 |
-
return torchaudio.load(io.BytesIO(value))
|
426 |
-
else:
|
427 |
-
return None
|
428 |
-
|
429 |
-
def collation_fn(samples):
|
430 |
-
batched = list(zip(*samples))
|
431 |
-
result = []
|
432 |
-
for b in batched:
|
433 |
-
if isinstance(b[0], (int, float)):
|
434 |
-
b = np.array(b)
|
435 |
-
elif isinstance(b[0], torch.Tensor):
|
436 |
-
b = torch.stack(b)
|
437 |
-
elif isinstance(b[0], np.ndarray):
|
438 |
-
b = np.array(b)
|
439 |
-
else:
|
440 |
-
b = b
|
441 |
-
result.append(b)
|
442 |
-
return result
|
443 |
-
|
444 |
-
class WebDatasetDataLoader():
|
445 |
-
def __init__(
|
446 |
-
self,
|
447 |
-
datasets: List[S3DatasetConfig],
|
448 |
-
batch_size,
|
449 |
-
sample_size,
|
450 |
-
sample_rate=48000,
|
451 |
-
num_workers=8,
|
452 |
-
epoch_steps=1000,
|
453 |
-
random_crop=True,
|
454 |
-
force_channels="stereo",
|
455 |
-
augment_phase=True,
|
456 |
-
**data_loader_kwargs
|
457 |
-
):
|
458 |
-
|
459 |
-
self.datasets = datasets
|
460 |
-
|
461 |
-
self.sample_size = sample_size
|
462 |
-
self.sample_rate = sample_rate
|
463 |
-
self.random_crop = random_crop
|
464 |
-
self.force_channels = force_channels
|
465 |
-
self.augment_phase = augment_phase
|
466 |
-
|
467 |
-
urls = [dataset.load_data_urls() for dataset in datasets]
|
468 |
-
|
469 |
-
# Flatten the list of lists of URLs
|
470 |
-
urls = [url for dataset_urls in urls for url in dataset_urls]
|
471 |
-
|
472 |
-
# Shuffle the urls
|
473 |
-
random.shuffle(urls)
|
474 |
-
|
475 |
-
self.dataset = wds.DataPipeline(
|
476 |
-
wds.ResampledShards(urls),
|
477 |
-
wds.tarfile_to_samples(handler=log_and_continue),
|
478 |
-
wds.decode(audio_decoder, handler=log_and_continue),
|
479 |
-
wds.map(self.wds_preprocess, handler=log_and_continue),
|
480 |
-
wds.select(is_valid_sample),
|
481 |
-
wds.to_tuple("audio", "json", handler=log_and_continue),
|
482 |
-
#wds.shuffle(bufsize=1000, initial=5000),
|
483 |
-
wds.batched(batch_size, partial=False, collation_fn=collation_fn),
|
484 |
-
).with_epoch(epoch_steps//num_workers if num_workers > 0 else epoch_steps)
|
485 |
-
|
486 |
-
self.data_loader = wds.WebLoader(self.dataset, num_workers=num_workers, **data_loader_kwargs)
|
487 |
-
|
488 |
-
def wds_preprocess(self, sample):
|
489 |
-
|
490 |
-
found_key, rewrite_key = '', ''
|
491 |
-
for k, v in sample.items(): # print the all entries in dict
|
492 |
-
for akey in AUDIO_KEYS:
|
493 |
-
if k.endswith(akey):
|
494 |
-
# to rename long/weird key with its simpler counterpart
|
495 |
-
found_key, rewrite_key = k, akey
|
496 |
-
break
|
497 |
-
if '' != found_key:
|
498 |
-
break
|
499 |
-
if '' == found_key: # got no audio!
|
500 |
-
return None # try returning None to tell WebDataset to skip this one
|
501 |
-
|
502 |
-
audio, in_sr = sample[found_key]
|
503 |
-
if in_sr != self.sample_rate:
|
504 |
-
resample_tf = T.Resample(in_sr, self.sample_rate)
|
505 |
-
audio = resample_tf(audio)
|
506 |
-
|
507 |
-
if self.sample_size is not None:
|
508 |
-
# Pad/crop and get the relative timestamp
|
509 |
-
pad_crop = PadCrop_Normalized_T(
|
510 |
-
self.sample_size, randomize=self.random_crop, sample_rate=self.sample_rate)
|
511 |
-
audio, t_start, t_end, seconds_start, seconds_total, padding_mask = pad_crop(
|
512 |
-
audio)
|
513 |
-
sample["json"]["seconds_start"] = seconds_start
|
514 |
-
sample["json"]["seconds_total"] = seconds_total
|
515 |
-
sample["json"]["padding_mask"] = padding_mask
|
516 |
-
else:
|
517 |
-
t_start, t_end = 0, 1
|
518 |
-
|
519 |
-
# Check if audio is length zero, initialize to a single zero if so
|
520 |
-
if audio.shape[-1] == 0:
|
521 |
-
audio = torch.zeros(1, 1)
|
522 |
-
|
523 |
-
# Make the audio stereo and augment by randomly inverting phase
|
524 |
-
augs = torch.nn.Sequential(
|
525 |
-
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
|
526 |
-
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
|
527 |
-
PhaseFlipper() if self.augment_phase else torch.nn.Identity()
|
528 |
-
)
|
529 |
-
|
530 |
-
audio = augs(audio)
|
531 |
-
|
532 |
-
sample["json"]["timestamps"] = (t_start, t_end)
|
533 |
-
|
534 |
-
if "text" in sample["json"]:
|
535 |
-
sample["json"]["prompt"] = sample["json"]["text"]
|
536 |
-
|
537 |
-
# Check for custom metadata functions
|
538 |
-
for dataset in self.datasets:
|
539 |
-
if dataset.custom_metadata_fn is None:
|
540 |
-
continue
|
541 |
-
|
542 |
-
if dataset.path in sample["__url__"]:
|
543 |
-
custom_metadata = dataset.custom_metadata_fn(sample["json"], audio)
|
544 |
-
sample["json"].update(custom_metadata)
|
545 |
-
|
546 |
-
if found_key != rewrite_key: # rename long/weird key with its simpler counterpart
|
547 |
-
del sample[found_key]
|
548 |
-
|
549 |
-
sample["audio"] = audio
|
550 |
-
|
551 |
-
# Add audio to the metadata as well for conditioning
|
552 |
-
sample["json"]["audio"] = audio
|
553 |
-
|
554 |
-
return sample
|
555 |
-
|
556 |
-
def create_dataloader_from_config(dataset_config, batch_size, sample_size, sample_rate, audio_channels=2, num_workers=4):
|
557 |
-
|
558 |
-
dataset_type = dataset_config.get("dataset_type", None)
|
559 |
-
|
560 |
-
assert dataset_type is not None, "Dataset type must be specified in dataset config"
|
561 |
-
|
562 |
-
if audio_channels == 1:
|
563 |
-
force_channels = "mono"
|
564 |
-
else:
|
565 |
-
force_channels = "stereo"
|
566 |
-
|
567 |
-
if dataset_type == "audio_dir":
|
568 |
-
|
569 |
-
audio_dir_configs = dataset_config.get("datasets", None)
|
570 |
-
|
571 |
-
assert audio_dir_configs is not None, "Directory configuration must be specified in datasets[\"dataset\"]"
|
572 |
-
|
573 |
-
configs = []
|
574 |
-
|
575 |
-
for audio_dir_config in audio_dir_configs:
|
576 |
-
audio_dir_path = audio_dir_config.get("path", None)
|
577 |
-
assert audio_dir_path is not None, "Path must be set for local audio directory configuration"
|
578 |
-
|
579 |
-
custom_metadata_fn = None
|
580 |
-
custom_metadata_module_path = audio_dir_config.get("custom_metadata_module", None)
|
581 |
-
|
582 |
-
if custom_metadata_module_path is not None:
|
583 |
-
spec = importlib.util.spec_from_file_location("metadata_module", custom_metadata_module_path)
|
584 |
-
metadata_module = importlib.util.module_from_spec(spec)
|
585 |
-
spec.loader.exec_module(metadata_module)
|
586 |
-
|
587 |
-
custom_metadata_fn = metadata_module.get_custom_metadata
|
588 |
-
|
589 |
-
configs.append(
|
590 |
-
LocalDatasetConfig(
|
591 |
-
id=audio_dir_config["id"],
|
592 |
-
path=audio_dir_path,
|
593 |
-
custom_metadata_fn=custom_metadata_fn
|
594 |
-
)
|
595 |
-
)
|
596 |
-
|
597 |
-
train_set = SampleDataset(
|
598 |
-
configs,
|
599 |
-
sample_rate=sample_rate,
|
600 |
-
sample_size=sample_size,
|
601 |
-
random_crop=dataset_config.get("random_crop", True),
|
602 |
-
force_channels=force_channels
|
603 |
-
)
|
604 |
-
|
605 |
-
return torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,
|
606 |
-
num_workers=num_workers, persistent_workers=True, pin_memory=True, drop_last=True, collate_fn=collation_fn)
|
607 |
-
|
608 |
-
elif dataset_type in ["s3", "wds"]: # Support "s3" type for backwards compatibility
|
609 |
-
wds_configs = []
|
610 |
-
|
611 |
-
for wds_config in dataset_config["datasets"]:
|
612 |
-
|
613 |
-
custom_metadata_fn = None
|
614 |
-
custom_metadata_module_path = wds_config.get("custom_metadata_module", None)
|
615 |
-
|
616 |
-
if custom_metadata_module_path is not None:
|
617 |
-
spec = importlib.util.spec_from_file_location("metadata_module", custom_metadata_module_path)
|
618 |
-
metadata_module = importlib.util.module_from_spec(spec)
|
619 |
-
spec.loader.exec_module(metadata_module)
|
620 |
-
|
621 |
-
custom_metadata_fn = metadata_module.get_custom_metadata
|
622 |
-
|
623 |
-
if "s3_path" in wds_config:
|
624 |
-
|
625 |
-
wds_configs.append(
|
626 |
-
S3DatasetConfig(
|
627 |
-
id=wds_config["id"],
|
628 |
-
s3_path=wds_config["s3_path"],
|
629 |
-
custom_metadata_fn=custom_metadata_fn,
|
630 |
-
profile=wds_config.get("profile", None),
|
631 |
-
)
|
632 |
-
)
|
633 |
-
|
634 |
-
elif "path" in wds_config:
|
635 |
-
|
636 |
-
wds_configs.append(
|
637 |
-
LocalWebDatasetConfig(
|
638 |
-
id=wds_config["id"],
|
639 |
-
path=wds_config["path"],
|
640 |
-
custom_metadata_fn=custom_metadata_fn
|
641 |
-
)
|
642 |
-
)
|
643 |
-
|
644 |
-
return WebDatasetDataLoader(
|
645 |
-
wds_configs,
|
646 |
-
sample_rate=sample_rate,
|
647 |
-
sample_size=sample_size,
|
648 |
-
batch_size=batch_size,
|
649 |
-
random_crop=dataset_config.get("random_crop", True),
|
650 |
-
num_workers=num_workers,
|
651 |
-
persistent_workers=True,
|
652 |
-
force_channels=force_channels,
|
653 |
-
epoch_steps=dataset_config.get("epoch_steps", 2000)
|
654 |
-
).data_loader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/data/utils.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import random
|
3 |
-
import torch
|
4 |
-
|
5 |
-
from torch import nn
|
6 |
-
from typing import Tuple
|
7 |
-
|
8 |
-
class PadCrop(nn.Module):
|
9 |
-
def __init__(self, n_samples, randomize=True):
|
10 |
-
super().__init__()
|
11 |
-
self.n_samples = n_samples
|
12 |
-
self.randomize = randomize
|
13 |
-
|
14 |
-
def __call__(self, signal):
|
15 |
-
n, s = signal.shape
|
16 |
-
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item()
|
17 |
-
end = start + self.n_samples
|
18 |
-
output = signal.new_zeros([n, self.n_samples])
|
19 |
-
output[:, :min(s, self.n_samples)] = signal[:, start:end]
|
20 |
-
return output
|
21 |
-
|
22 |
-
class PadCrop_Normalized_T(nn.Module):
|
23 |
-
|
24 |
-
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True):
|
25 |
-
|
26 |
-
super().__init__()
|
27 |
-
|
28 |
-
self.n_samples = n_samples
|
29 |
-
self.sample_rate = sample_rate
|
30 |
-
self.randomize = randomize
|
31 |
-
|
32 |
-
def __call__(self, source: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:
|
33 |
-
|
34 |
-
n_channels, n_samples = source.shape
|
35 |
-
|
36 |
-
# If the audio is shorter than the desired length, pad it
|
37 |
-
upper_bound = max(0, n_samples - self.n_samples)
|
38 |
-
|
39 |
-
# If randomize is False, always start at the beginning of the audio
|
40 |
-
offset = 0
|
41 |
-
if(self.randomize and n_samples > self.n_samples):
|
42 |
-
offset = random.randint(0, upper_bound)
|
43 |
-
|
44 |
-
# Calculate the start and end times of the chunk
|
45 |
-
t_start = offset / (upper_bound + self.n_samples)
|
46 |
-
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
|
47 |
-
|
48 |
-
# Create the chunk
|
49 |
-
chunk = source.new_zeros([n_channels, self.n_samples])
|
50 |
-
|
51 |
-
# Copy the audio into the chunk
|
52 |
-
chunk[:, :min(n_samples, self.n_samples)] = source[:, offset:offset + self.n_samples]
|
53 |
-
|
54 |
-
# Calculate the start and end times of the chunk in seconds
|
55 |
-
seconds_start = math.floor(offset / self.sample_rate)
|
56 |
-
seconds_total = math.ceil(n_samples / self.sample_rate)
|
57 |
-
|
58 |
-
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
|
59 |
-
padding_mask = torch.zeros([self.n_samples])
|
60 |
-
padding_mask[:min(n_samples, self.n_samples)] = 1
|
61 |
-
|
62 |
-
|
63 |
-
return (
|
64 |
-
chunk,
|
65 |
-
t_start,
|
66 |
-
t_end,
|
67 |
-
seconds_start,
|
68 |
-
seconds_total,
|
69 |
-
padding_mask
|
70 |
-
)
|
71 |
-
|
72 |
-
class PhaseFlipper(nn.Module):
|
73 |
-
"Randomly invert the phase of a signal"
|
74 |
-
def __init__(self, p=0.5):
|
75 |
-
super().__init__()
|
76 |
-
self.p = p
|
77 |
-
def __call__(self, signal):
|
78 |
-
return -signal if (random.random() < self.p) else signal
|
79 |
-
|
80 |
-
class Mono(nn.Module):
|
81 |
-
def __call__(self, signal):
|
82 |
-
return torch.mean(signal, dim=0, keepdims=True) if len(signal.shape) > 1 else signal
|
83 |
-
|
84 |
-
class Stereo(nn.Module):
|
85 |
-
def __call__(self, signal):
|
86 |
-
signal_shape = signal.shape
|
87 |
-
# Check if it's mono
|
88 |
-
if len(signal_shape) == 1: # s -> 2, s
|
89 |
-
signal = signal.unsqueeze(0).repeat(2, 1)
|
90 |
-
elif len(signal_shape) == 2:
|
91 |
-
if signal_shape[0] == 1: #1, s -> 2, s
|
92 |
-
signal = signal.repeat(2, 1)
|
93 |
-
elif signal_shape[0] > 2: #?, s -> 2,s
|
94 |
-
signal = signal[:2, :]
|
95 |
-
|
96 |
-
return signal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/inference/__init__.py
DELETED
File without changes
|
stable/build/lib/stable_audio_tools/inference/generation.py
DELETED
@@ -1,274 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import typing as tp
|
4 |
-
import math
|
5 |
-
from torchaudio import transforms as T
|
6 |
-
|
7 |
-
from .utils import prepare_audio
|
8 |
-
from .sampling import sample, sample_k, sample_rf
|
9 |
-
from ..data.utils import PadCrop
|
10 |
-
|
11 |
-
def generate_diffusion_uncond(
|
12 |
-
model,
|
13 |
-
steps: int = 250,
|
14 |
-
batch_size: int = 1,
|
15 |
-
sample_size: int = 2097152,
|
16 |
-
seed: int = -1,
|
17 |
-
device: str = "cuda",
|
18 |
-
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
|
19 |
-
init_noise_level: float = 1.0,
|
20 |
-
return_latents = False,
|
21 |
-
**sampler_kwargs
|
22 |
-
) -> torch.Tensor:
|
23 |
-
|
24 |
-
# The length of the output in audio samples
|
25 |
-
audio_sample_size = sample_size
|
26 |
-
|
27 |
-
# If this is latent diffusion, change sample_size instead to the downsampled latent size
|
28 |
-
if model.pretransform is not None:
|
29 |
-
sample_size = sample_size // model.pretransform.downsampling_ratio
|
30 |
-
|
31 |
-
# Seed
|
32 |
-
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
|
33 |
-
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1, dtype=np.uint32)
|
34 |
-
print(seed)
|
35 |
-
torch.manual_seed(seed)
|
36 |
-
# Define the initial noise immediately after setting the seed
|
37 |
-
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
|
38 |
-
|
39 |
-
if init_audio is not None:
|
40 |
-
# The user supplied some initial audio (for inpainting or variation). Let us prepare the input audio.
|
41 |
-
in_sr, init_audio = init_audio
|
42 |
-
|
43 |
-
io_channels = model.io_channels
|
44 |
-
|
45 |
-
# For latent models, set the io_channels to the autoencoder's io_channels
|
46 |
-
if model.pretransform is not None:
|
47 |
-
io_channels = model.pretransform.io_channels
|
48 |
-
|
49 |
-
# Prepare the initial audio for use by the model
|
50 |
-
init_audio = prepare_audio(init_audio, in_sr=in_sr, target_sr=model.sample_rate, target_length=audio_sample_size, target_channels=io_channels, device=device)
|
51 |
-
|
52 |
-
# For latent models, encode the initial audio into latents
|
53 |
-
if model.pretransform is not None:
|
54 |
-
init_audio = model.pretransform.encode(init_audio)
|
55 |
-
|
56 |
-
init_audio = init_audio.repeat(batch_size, 1, 1)
|
57 |
-
else:
|
58 |
-
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
|
59 |
-
init_audio = None
|
60 |
-
init_noise_level = None
|
61 |
-
|
62 |
-
# Inpainting mask
|
63 |
-
|
64 |
-
if init_audio is not None:
|
65 |
-
# variations
|
66 |
-
sampler_kwargs["sigma_max"] = init_noise_level
|
67 |
-
mask = None
|
68 |
-
else:
|
69 |
-
mask = None
|
70 |
-
|
71 |
-
# Now the generative AI part:
|
72 |
-
|
73 |
-
diff_objective = model.diffusion_objective
|
74 |
-
|
75 |
-
if diff_objective == "v":
|
76 |
-
# k-diffusion denoising process go!
|
77 |
-
sampled = sample_k(model.model, noise, init_audio, mask, steps, **sampler_kwargs, device=device)
|
78 |
-
elif diff_objective == "rectified_flow":
|
79 |
-
sampled = sample_rf(model.model, noise, init_data=init_audio, steps=steps, **sampler_kwargs, device=device)
|
80 |
-
|
81 |
-
# Denoising process done.
|
82 |
-
# If this is latent diffusion, decode latents back into audio
|
83 |
-
if model.pretransform is not None and not return_latents:
|
84 |
-
sampled = model.pretransform.decode(sampled)
|
85 |
-
|
86 |
-
# Return audio
|
87 |
-
return sampled
|
88 |
-
|
89 |
-
|
90 |
-
def generate_diffusion_cond(
|
91 |
-
model,
|
92 |
-
steps: int = 250,
|
93 |
-
cfg_scale=6,
|
94 |
-
conditioning: dict = None,
|
95 |
-
conditioning_tensors: tp.Optional[dict] = None,
|
96 |
-
negative_conditioning: dict = None,
|
97 |
-
negative_conditioning_tensors: tp.Optional[dict] = None,
|
98 |
-
batch_size: int = 1,
|
99 |
-
sample_size: int = 2097152,
|
100 |
-
sample_rate: int = 48000,
|
101 |
-
seed: int = -1,
|
102 |
-
device: str = "cuda",
|
103 |
-
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
|
104 |
-
init_noise_level: float = 1.0,
|
105 |
-
mask_args: dict = None,
|
106 |
-
return_latents = False,
|
107 |
-
**sampler_kwargs
|
108 |
-
) -> torch.Tensor:
|
109 |
-
"""
|
110 |
-
Generate audio from a prompt using a diffusion model.
|
111 |
-
|
112 |
-
Args:
|
113 |
-
model: The diffusion model to use for generation.
|
114 |
-
steps: The number of diffusion steps to use.
|
115 |
-
cfg_scale: Classifier-free guidance scale
|
116 |
-
conditioning: A dictionary of conditioning parameters to use for generation.
|
117 |
-
conditioning_tensors: A dictionary of precomputed conditioning tensors to use for generation.
|
118 |
-
batch_size: The batch size to use for generation.
|
119 |
-
sample_size: The length of the audio to generate, in samples.
|
120 |
-
sample_rate: The sample rate of the audio to generate (Deprecated, now pulled from the model directly)
|
121 |
-
seed: The random seed to use for generation, or -1 to use a random seed.
|
122 |
-
device: The device to use for generation.
|
123 |
-
init_audio: A tuple of (sample_rate, audio) to use as the initial audio for generation.
|
124 |
-
init_noise_level: The noise level to use when generating from an initial audio sample.
|
125 |
-
return_latents: Whether to return the latents used for generation instead of the decoded audio.
|
126 |
-
**sampler_kwargs: Additional keyword arguments to pass to the sampler.
|
127 |
-
"""
|
128 |
-
|
129 |
-
# The length of the output in audio samples
|
130 |
-
audio_sample_size = sample_size
|
131 |
-
|
132 |
-
# If this is latent diffusion, change sample_size instead to the downsampled latent size
|
133 |
-
if model.pretransform is not None:
|
134 |
-
sample_size = sample_size // model.pretransform.downsampling_ratio
|
135 |
-
|
136 |
-
# Seed
|
137 |
-
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
|
138 |
-
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1, dtype=np.uint32)
|
139 |
-
print(seed)
|
140 |
-
torch.manual_seed(seed)
|
141 |
-
# Define the initial noise immediately after setting the seed
|
142 |
-
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
|
143 |
-
|
144 |
-
torch.backends.cuda.matmul.allow_tf32 = False
|
145 |
-
torch.backends.cudnn.allow_tf32 = False
|
146 |
-
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
147 |
-
torch.backends.cudnn.benchmark = False
|
148 |
-
|
149 |
-
# Conditioning
|
150 |
-
assert conditioning is not None or conditioning_tensors is not None, "Must provide either conditioning or conditioning_tensors"
|
151 |
-
if conditioning_tensors is None:
|
152 |
-
conditioning_tensors = model.conditioner(conditioning, device)
|
153 |
-
conditioning_inputs = model.get_conditioning_inputs(conditioning_tensors)
|
154 |
-
|
155 |
-
if negative_conditioning is not None or negative_conditioning_tensors is not None:
|
156 |
-
|
157 |
-
if negative_conditioning_tensors is None:
|
158 |
-
negative_conditioning_tensors = model.conditioner(negative_conditioning, device)
|
159 |
-
|
160 |
-
negative_conditioning_tensors = model.get_conditioning_inputs(negative_conditioning_tensors, negative=True)
|
161 |
-
else:
|
162 |
-
negative_conditioning_tensors = {}
|
163 |
-
|
164 |
-
if init_audio is not None:
|
165 |
-
# The user supplied some initial audio (for inpainting or variation). Let us prepare the input audio.
|
166 |
-
in_sr, init_audio = init_audio
|
167 |
-
|
168 |
-
io_channels = model.io_channels
|
169 |
-
|
170 |
-
# For latent models, set the io_channels to the autoencoder's io_channels
|
171 |
-
if model.pretransform is not None:
|
172 |
-
io_channels = model.pretransform.io_channels
|
173 |
-
|
174 |
-
# Prepare the initial audio for use by the model
|
175 |
-
init_audio = prepare_audio(init_audio, in_sr=in_sr, target_sr=model.sample_rate, target_length=audio_sample_size, target_channels=io_channels, device=device)
|
176 |
-
|
177 |
-
# For latent models, encode the initial audio into latents
|
178 |
-
if model.pretransform is not None:
|
179 |
-
init_audio = model.pretransform.encode(init_audio)
|
180 |
-
|
181 |
-
init_audio = init_audio.repeat(batch_size, 1, 1)
|
182 |
-
else:
|
183 |
-
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
|
184 |
-
init_audio = None
|
185 |
-
init_noise_level = None
|
186 |
-
mask_args = None
|
187 |
-
|
188 |
-
# Inpainting mask
|
189 |
-
if init_audio is not None and mask_args is not None:
|
190 |
-
# Cut and paste init_audio according to cropfrom, pastefrom, pasteto
|
191 |
-
# This is helpful for forward and reverse outpainting
|
192 |
-
cropfrom = math.floor(mask_args["cropfrom"]/100.0 * sample_size)
|
193 |
-
pastefrom = math.floor(mask_args["pastefrom"]/100.0 * sample_size)
|
194 |
-
pasteto = math.ceil(mask_args["pasteto"]/100.0 * sample_size)
|
195 |
-
assert pastefrom < pasteto, "Paste From should be less than Paste To"
|
196 |
-
croplen = pasteto - pastefrom
|
197 |
-
if cropfrom + croplen > sample_size:
|
198 |
-
croplen = sample_size - cropfrom
|
199 |
-
cropto = cropfrom + croplen
|
200 |
-
pasteto = pastefrom + croplen
|
201 |
-
cutpaste = init_audio.new_zeros(init_audio.shape)
|
202 |
-
cutpaste[:, :, pastefrom:pasteto] = init_audio[:,:,cropfrom:cropto]
|
203 |
-
#print(cropfrom, cropto, pastefrom, pasteto)
|
204 |
-
init_audio = cutpaste
|
205 |
-
# Build a soft mask (list of floats 0 to 1, the size of the latent) from the given args
|
206 |
-
mask = build_mask(sample_size, mask_args)
|
207 |
-
mask = mask.to(device)
|
208 |
-
elif init_audio is not None and mask_args is None:
|
209 |
-
# variations
|
210 |
-
sampler_kwargs["sigma_max"] = init_noise_level
|
211 |
-
mask = None
|
212 |
-
else:
|
213 |
-
mask = None
|
214 |
-
|
215 |
-
model_dtype = next(model.model.parameters()).dtype
|
216 |
-
noise = noise.type(model_dtype)
|
217 |
-
conditioning_inputs = {k: v.type(model_dtype) if v is not None else v for k, v in conditioning_inputs.items()}
|
218 |
-
# Now the generative AI part:
|
219 |
-
# k-diffusion denoising process go!
|
220 |
-
|
221 |
-
diff_objective = model.diffusion_objective
|
222 |
-
|
223 |
-
if diff_objective == "v":
|
224 |
-
# k-diffusion denoising process go!
|
225 |
-
sampled = sample_k(model.model, noise, init_audio, mask, steps, **sampler_kwargs, **conditioning_inputs, **negative_conditioning_tensors, cfg_scale=cfg_scale, batch_cfg=True, rescale_cfg=True, device=device)
|
226 |
-
elif diff_objective == "rectified_flow":
|
227 |
-
|
228 |
-
if "sigma_min" in sampler_kwargs:
|
229 |
-
del sampler_kwargs["sigma_min"]
|
230 |
-
|
231 |
-
if "sampler_type" in sampler_kwargs:
|
232 |
-
del sampler_kwargs["sampler_type"]
|
233 |
-
|
234 |
-
sampled = sample_rf(model.model, noise, init_data=init_audio, steps=steps, **sampler_kwargs, **conditioning_inputs, **negative_conditioning_tensors, cfg_scale=cfg_scale, batch_cfg=True, rescale_cfg=True, device=device)
|
235 |
-
|
236 |
-
# v-diffusion:
|
237 |
-
#sampled = sample(model.model, noise, steps, 0, **conditioning_tensors, embedding_scale=cfg_scale)
|
238 |
-
del noise
|
239 |
-
del conditioning_tensors
|
240 |
-
del conditioning_inputs
|
241 |
-
torch.cuda.empty_cache()
|
242 |
-
# Denoising process done.
|
243 |
-
# If this is latent diffusion, decode latents back into audio
|
244 |
-
if model.pretransform is not None and not return_latents:
|
245 |
-
#cast sampled latents to pretransform dtype
|
246 |
-
sampled = sampled.to(next(model.pretransform.parameters()).dtype)
|
247 |
-
sampled = model.pretransform.decode(sampled)
|
248 |
-
|
249 |
-
# Return audio
|
250 |
-
return sampled
|
251 |
-
|
252 |
-
# builds a softmask given the parameters
|
253 |
-
# returns array of values 0 to 1, size sample_size, where 0 means noise / fresh generation, 1 means keep the input audio,
|
254 |
-
# and anything between is a mixture of old/new
|
255 |
-
# ideally 0.5 is half/half mixture but i haven't figured this out yet
|
256 |
-
def build_mask(sample_size, mask_args):
|
257 |
-
maskstart = math.floor(mask_args["maskstart"]/100.0 * sample_size)
|
258 |
-
maskend = math.ceil(mask_args["maskend"]/100.0 * sample_size)
|
259 |
-
softnessL = round(mask_args["softnessL"]/100.0 * sample_size)
|
260 |
-
softnessR = round(mask_args["softnessR"]/100.0 * sample_size)
|
261 |
-
marination = mask_args["marination"]
|
262 |
-
# use hann windows for softening the transition (i don't know if this is correct)
|
263 |
-
hannL = torch.hann_window(softnessL*2, periodic=False)[:softnessL]
|
264 |
-
hannR = torch.hann_window(softnessR*2, periodic=False)[softnessR:]
|
265 |
-
# build the mask.
|
266 |
-
mask = torch.zeros((sample_size))
|
267 |
-
mask[maskstart:maskend] = 1
|
268 |
-
mask[maskstart:maskstart+softnessL] = hannL
|
269 |
-
mask[maskend-softnessR:maskend] = hannR
|
270 |
-
# marination finishes the inpainting early in the denoising schedule, and lets audio get changed in the final rounds
|
271 |
-
if marination > 0:
|
272 |
-
mask = mask * (1-marination)
|
273 |
-
#print(mask)
|
274 |
-
return mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/inference/sampling.py
DELETED
@@ -1,232 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import math
|
3 |
-
from tqdm import trange, tqdm
|
4 |
-
|
5 |
-
import k_diffusion as K
|
6 |
-
|
7 |
-
# Define the noise schedule and sampling loop
|
8 |
-
def get_alphas_sigmas(t):
|
9 |
-
"""Returns the scaling factors for the clean image (alpha) and for the
|
10 |
-
noise (sigma), given a timestep."""
|
11 |
-
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
|
12 |
-
|
13 |
-
def alpha_sigma_to_t(alpha, sigma):
|
14 |
-
"""Returns a timestep, given the scaling factors for the clean image and for
|
15 |
-
the noise."""
|
16 |
-
return torch.atan2(sigma, alpha) / math.pi * 2
|
17 |
-
|
18 |
-
def t_to_alpha_sigma(t):
|
19 |
-
"""Returns the scaling factors for the clean image and for the noise, given
|
20 |
-
a timestep."""
|
21 |
-
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
|
22 |
-
|
23 |
-
|
24 |
-
@torch.no_grad()
|
25 |
-
def sample_discrete_euler(model, x, steps, sigma_max=1, **extra_args):
|
26 |
-
"""Draws samples from a model given starting noise. Euler method"""
|
27 |
-
|
28 |
-
# Make tensor of ones to broadcast the single t values
|
29 |
-
ts = x.new_ones([x.shape[0]])
|
30 |
-
|
31 |
-
# Create the noise schedule
|
32 |
-
t = torch.linspace(sigma_max, 0, steps + 1)
|
33 |
-
|
34 |
-
#alphas, sigmas = 1-t, t
|
35 |
-
|
36 |
-
for t_curr, t_prev in tqdm(zip(t[:-1], t[1:])):
|
37 |
-
# Broadcast the current timestep to the correct shape
|
38 |
-
t_curr_tensor = t_curr * torch.ones(
|
39 |
-
(x.shape[0],), dtype=x.dtype, device=x.device
|
40 |
-
)
|
41 |
-
dt = t_prev - t_curr # we solve backwards in our formulation
|
42 |
-
x = x + dt * model(x, t_curr_tensor, **extra_args) #.denoise(x, denoiser, t_curr_tensor, cond, uc)
|
43 |
-
|
44 |
-
# If we are on the last timestep, output the denoised image
|
45 |
-
return x
|
46 |
-
|
47 |
-
@torch.no_grad()
|
48 |
-
def sample(model, x, steps, eta, **extra_args):
|
49 |
-
"""Draws samples from a model given starting noise. v-diffusion"""
|
50 |
-
ts = x.new_ones([x.shape[0]])
|
51 |
-
|
52 |
-
# Create the noise schedule
|
53 |
-
t = torch.linspace(1, 0, steps + 1)[:-1]
|
54 |
-
|
55 |
-
alphas, sigmas = get_alphas_sigmas(t)
|
56 |
-
|
57 |
-
# The sampling loop
|
58 |
-
for i in trange(steps):
|
59 |
-
|
60 |
-
# Get the model output (v, the predicted velocity)
|
61 |
-
with torch.cuda.amp.autocast():
|
62 |
-
v = model(x, ts * t[i], **extra_args).float()
|
63 |
-
|
64 |
-
# Predict the noise and the denoised image
|
65 |
-
pred = x * alphas[i] - v * sigmas[i]
|
66 |
-
eps = x * sigmas[i] + v * alphas[i]
|
67 |
-
|
68 |
-
# If we are not on the last timestep, compute the noisy image for the
|
69 |
-
# next timestep.
|
70 |
-
if i < steps - 1:
|
71 |
-
# If eta > 0, adjust the scaling factor for the predicted noise
|
72 |
-
# downward according to the amount of additional noise to add
|
73 |
-
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
|
74 |
-
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
|
75 |
-
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
|
76 |
-
|
77 |
-
# Recombine the predicted noise and predicted denoised image in the
|
78 |
-
# correct proportions for the next step
|
79 |
-
x = pred * alphas[i + 1] + eps * adjusted_sigma
|
80 |
-
|
81 |
-
# Add the correct amount of fresh noise
|
82 |
-
if eta:
|
83 |
-
x += torch.randn_like(x) * ddim_sigma
|
84 |
-
|
85 |
-
# If we are on the last timestep, output the denoised image
|
86 |
-
return pred
|
87 |
-
|
88 |
-
# Soft mask inpainting is just shrinking hard (binary) mask inpainting
|
89 |
-
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
|
90 |
-
def get_bmask(i, steps, mask):
|
91 |
-
strength = (i+1)/(steps)
|
92 |
-
# convert to binary mask
|
93 |
-
bmask = torch.where(mask<=strength,1,0)
|
94 |
-
return bmask
|
95 |
-
|
96 |
-
def make_cond_model_fn(model, cond_fn):
|
97 |
-
def cond_model_fn(x, sigma, **kwargs):
|
98 |
-
with torch.enable_grad():
|
99 |
-
x = x.detach().requires_grad_()
|
100 |
-
denoised = model(x, sigma, **kwargs)
|
101 |
-
cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
|
102 |
-
cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
|
103 |
-
return cond_denoised
|
104 |
-
return cond_model_fn
|
105 |
-
|
106 |
-
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
|
107 |
-
# init_data is init_audio as latents (if this is latent diffusion)
|
108 |
-
# For sampling, set both init_data and mask to None
|
109 |
-
# For variations, set init_data
|
110 |
-
# For inpainting, set both init_data & mask
|
111 |
-
def sample_k(
|
112 |
-
model_fn,
|
113 |
-
noise,
|
114 |
-
init_data=None,
|
115 |
-
mask=None,
|
116 |
-
steps=100,
|
117 |
-
sampler_type="dpmpp-2m-sde",
|
118 |
-
sigma_min=0.5,
|
119 |
-
sigma_max=50,
|
120 |
-
rho=1.0, device="cuda",
|
121 |
-
callback=None,
|
122 |
-
cond_fn=None,
|
123 |
-
**extra_args
|
124 |
-
):
|
125 |
-
|
126 |
-
denoiser = K.external.VDenoiser(model_fn)
|
127 |
-
|
128 |
-
if cond_fn is not None:
|
129 |
-
denoiser = make_cond_model_fn(denoiser, cond_fn)
|
130 |
-
|
131 |
-
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
|
132 |
-
sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
|
133 |
-
# Scale the initial noise by sigma
|
134 |
-
noise = noise * sigmas[0]
|
135 |
-
|
136 |
-
wrapped_callback = callback
|
137 |
-
|
138 |
-
if mask is None and init_data is not None:
|
139 |
-
# VARIATION (no inpainting)
|
140 |
-
# set the initial latent to the init_data, and noise it with initial sigma
|
141 |
-
x = init_data + noise
|
142 |
-
elif mask is not None and init_data is not None:
|
143 |
-
# INPAINTING
|
144 |
-
bmask = get_bmask(0, steps, mask)
|
145 |
-
# initial noising
|
146 |
-
input_noised = init_data + noise
|
147 |
-
# set the initial latent to a mix of init_data and noise, based on step 0's binary mask
|
148 |
-
x = input_noised * bmask + noise * (1-bmask)
|
149 |
-
# define the inpainting callback function (Note: side effects, it mutates x)
|
150 |
-
# See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
|
151 |
-
# callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
152 |
-
# This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
|
153 |
-
def inpainting_callback(args):
|
154 |
-
i = args["i"]
|
155 |
-
x = args["x"]
|
156 |
-
sigma = args["sigma"]
|
157 |
-
#denoised = args["denoised"]
|
158 |
-
# noise the init_data input with this step's appropriate amount of noise
|
159 |
-
input_noised = init_data + torch.randn_like(init_data) * sigma
|
160 |
-
# shrinking hard mask
|
161 |
-
bmask = get_bmask(i, steps, mask)
|
162 |
-
# mix input_noise with x, using binary mask
|
163 |
-
new_x = input_noised * bmask + x * (1-bmask)
|
164 |
-
# mutate x
|
165 |
-
x[:,:,:] = new_x[:,:,:]
|
166 |
-
# wrap together the inpainting callback and the user-submitted callback.
|
167 |
-
if callback is None:
|
168 |
-
wrapped_callback = inpainting_callback
|
169 |
-
else:
|
170 |
-
wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
|
171 |
-
else:
|
172 |
-
# SAMPLING
|
173 |
-
# set the initial latent to noise
|
174 |
-
x = noise
|
175 |
-
|
176 |
-
|
177 |
-
with torch.cuda.amp.autocast():
|
178 |
-
if sampler_type == "k-heun":
|
179 |
-
return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
180 |
-
elif sampler_type == "k-lms":
|
181 |
-
return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
182 |
-
elif sampler_type == "k-dpmpp-2s-ancestral":
|
183 |
-
return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
184 |
-
elif sampler_type == "k-dpm-2":
|
185 |
-
return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
186 |
-
elif sampler_type == "k-dpm-fast":
|
187 |
-
return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
188 |
-
elif sampler_type == "k-dpm-adaptive":
|
189 |
-
return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
190 |
-
elif sampler_type == "dpmpp-2m-sde":
|
191 |
-
return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
192 |
-
elif sampler_type == "dpmpp-3m-sde":
|
193 |
-
return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
194 |
-
|
195 |
-
# Uses discrete Euler sampling for rectified flow models
|
196 |
-
# init_data is init_audio as latents (if this is latent diffusion)
|
197 |
-
# For sampling, set both init_data and mask to None
|
198 |
-
# For variations, set init_data
|
199 |
-
# For inpainting, set both init_data & mask
|
200 |
-
def sample_rf(
|
201 |
-
model_fn,
|
202 |
-
noise,
|
203 |
-
init_data=None,
|
204 |
-
steps=100,
|
205 |
-
sigma_max=1,
|
206 |
-
device="cuda",
|
207 |
-
callback=None,
|
208 |
-
cond_fn=None,
|
209 |
-
**extra_args
|
210 |
-
):
|
211 |
-
|
212 |
-
if sigma_max > 1:
|
213 |
-
sigma_max = 1
|
214 |
-
|
215 |
-
if cond_fn is not None:
|
216 |
-
denoiser = make_cond_model_fn(denoiser, cond_fn)
|
217 |
-
|
218 |
-
wrapped_callback = callback
|
219 |
-
|
220 |
-
if init_data is not None:
|
221 |
-
# VARIATION (no inpainting)
|
222 |
-
# Interpolate the init data and the noise for init audio
|
223 |
-
x = init_data * (1 - sigma_max) + noise * sigma_max
|
224 |
-
else:
|
225 |
-
# SAMPLING
|
226 |
-
# set the initial latent to noise
|
227 |
-
x = noise
|
228 |
-
|
229 |
-
with torch.cuda.amp.autocast():
|
230 |
-
# TODO: Add callback support
|
231 |
-
#return sample_discrete_euler(model_fn, x, steps, sigma_max, callback=wrapped_callback, **extra_args)
|
232 |
-
return sample_discrete_euler(model_fn, x, steps, sigma_max, **extra_args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/inference/utils.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
from ..data.utils import PadCrop
|
2 |
-
|
3 |
-
from torchaudio import transforms as T
|
4 |
-
|
5 |
-
def set_audio_channels(audio, target_channels):
|
6 |
-
if target_channels == 1:
|
7 |
-
# Convert to mono
|
8 |
-
audio = audio.mean(1, keepdim=True)
|
9 |
-
elif target_channels == 2:
|
10 |
-
# Convert to stereo
|
11 |
-
if audio.shape[1] == 1:
|
12 |
-
audio = audio.repeat(1, 2, 1)
|
13 |
-
elif audio.shape[1] > 2:
|
14 |
-
audio = audio[:, :2, :]
|
15 |
-
return audio
|
16 |
-
|
17 |
-
def prepare_audio(audio, in_sr, target_sr, target_length, target_channels, device):
|
18 |
-
|
19 |
-
audio = audio.to(device)
|
20 |
-
|
21 |
-
if in_sr != target_sr:
|
22 |
-
resample_tf = T.Resample(in_sr, target_sr).to(device)
|
23 |
-
audio = resample_tf(audio)
|
24 |
-
|
25 |
-
audio = PadCrop(target_length, randomize=False)(audio)
|
26 |
-
|
27 |
-
# Add batch dimension
|
28 |
-
if audio.dim() == 1:
|
29 |
-
audio = audio.unsqueeze(0).unsqueeze(0)
|
30 |
-
elif audio.dim() == 2:
|
31 |
-
audio = audio.unsqueeze(0)
|
32 |
-
|
33 |
-
audio = set_audio_channels(audio, target_channels)
|
34 |
-
|
35 |
-
return audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/interface/__init__.py
DELETED
File without changes
|
stable/build/lib/stable_audio_tools/interface/gradio.py
DELETED
@@ -1,700 +0,0 @@
|
|
1 |
-
import gc
|
2 |
-
import platform
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import gradio as gr
|
6 |
-
import json
|
7 |
-
import torch
|
8 |
-
import torchaudio
|
9 |
-
|
10 |
-
from aeiou.viz import audio_spectrogram_image
|
11 |
-
from einops import rearrange
|
12 |
-
from safetensors.torch import load_file
|
13 |
-
from torch.nn import functional as F
|
14 |
-
from torchaudio import transforms as T
|
15 |
-
|
16 |
-
from ..inference.generation import generate_diffusion_cond, generate_diffusion_uncond
|
17 |
-
from ..models.factory import create_model_from_config
|
18 |
-
from ..models.pretrained import get_pretrained_model
|
19 |
-
from ..models.utils import load_ckpt_state_dict
|
20 |
-
from ..inference.utils import prepare_audio
|
21 |
-
from ..training.utils import copy_state_dict
|
22 |
-
|
23 |
-
model = None
|
24 |
-
sample_rate = 32000
|
25 |
-
sample_size = 1920000
|
26 |
-
|
27 |
-
def load_model(model_config=None, model_ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, device="cuda", model_half=False):
|
28 |
-
global model, sample_rate, sample_size
|
29 |
-
|
30 |
-
if pretrained_name is not None:
|
31 |
-
print(f"Loading pretrained model {pretrained_name}")
|
32 |
-
model, model_config = get_pretrained_model(pretrained_name)
|
33 |
-
|
34 |
-
elif model_config is not None and model_ckpt_path is not None:
|
35 |
-
print(f"Creating model from config")
|
36 |
-
model = create_model_from_config(model_config)
|
37 |
-
|
38 |
-
print(f"Loading model checkpoint from {model_ckpt_path}")
|
39 |
-
# Load checkpoint
|
40 |
-
copy_state_dict(model, load_ckpt_state_dict(model_ckpt_path))
|
41 |
-
#model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))
|
42 |
-
|
43 |
-
sample_rate = model_config["sample_rate"]
|
44 |
-
sample_size = model_config["sample_size"]
|
45 |
-
|
46 |
-
if pretransform_ckpt_path is not None:
|
47 |
-
print(f"Loading pretransform checkpoint from {pretransform_ckpt_path}")
|
48 |
-
model.pretransform.load_state_dict(load_ckpt_state_dict(pretransform_ckpt_path), strict=False)
|
49 |
-
print(f"Done loading pretransform")
|
50 |
-
|
51 |
-
model.to(device).eval().requires_grad_(False)
|
52 |
-
|
53 |
-
if model_half:
|
54 |
-
model.to(torch.float16)
|
55 |
-
|
56 |
-
print(f"Done loading model")
|
57 |
-
|
58 |
-
return model, model_config
|
59 |
-
|
60 |
-
def generate_cond(
|
61 |
-
prompt,
|
62 |
-
negative_prompt=None,
|
63 |
-
seconds_start=0,
|
64 |
-
seconds_total=30,
|
65 |
-
cfg_scale=6.0,
|
66 |
-
steps=250,
|
67 |
-
preview_every=None,
|
68 |
-
seed=-1,
|
69 |
-
sampler_type="dpmpp-3m-sde",
|
70 |
-
sigma_min=0.03,
|
71 |
-
sigma_max=1000,
|
72 |
-
cfg_rescale=0.0,
|
73 |
-
use_init=False,
|
74 |
-
init_audio=None,
|
75 |
-
init_noise_level=1.0,
|
76 |
-
mask_cropfrom=None,
|
77 |
-
mask_pastefrom=None,
|
78 |
-
mask_pasteto=None,
|
79 |
-
mask_maskstart=None,
|
80 |
-
mask_maskend=None,
|
81 |
-
mask_softnessL=None,
|
82 |
-
mask_softnessR=None,
|
83 |
-
mask_marination=None,
|
84 |
-
batch_size=1
|
85 |
-
):
|
86 |
-
|
87 |
-
if torch.cuda.is_available():
|
88 |
-
torch.cuda.empty_cache()
|
89 |
-
gc.collect()
|
90 |
-
|
91 |
-
print(f"Prompt: {prompt}")
|
92 |
-
|
93 |
-
global preview_images
|
94 |
-
preview_images = []
|
95 |
-
if preview_every == 0:
|
96 |
-
preview_every = None
|
97 |
-
|
98 |
-
# Return fake stereo audio
|
99 |
-
conditioning = [{"prompt": prompt, "seconds_start": seconds_start, "seconds_total": seconds_total}] * batch_size
|
100 |
-
|
101 |
-
if negative_prompt:
|
102 |
-
negative_conditioning = [{"prompt": negative_prompt, "seconds_start": seconds_start, "seconds_total": seconds_total}] * batch_size
|
103 |
-
else:
|
104 |
-
negative_conditioning = None
|
105 |
-
|
106 |
-
#Get the device from the model
|
107 |
-
device = next(model.parameters()).device
|
108 |
-
|
109 |
-
seed = int(seed)
|
110 |
-
|
111 |
-
if not use_init:
|
112 |
-
init_audio = None
|
113 |
-
|
114 |
-
input_sample_size = sample_size
|
115 |
-
|
116 |
-
if init_audio is not None:
|
117 |
-
in_sr, init_audio = init_audio
|
118 |
-
# Turn into torch tensor, converting from int16 to float32
|
119 |
-
init_audio = torch.from_numpy(init_audio).float().div(32767)
|
120 |
-
|
121 |
-
if init_audio.dim() == 1:
|
122 |
-
init_audio = init_audio.unsqueeze(0) # [1, n]
|
123 |
-
elif init_audio.dim() == 2:
|
124 |
-
init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n]
|
125 |
-
|
126 |
-
if in_sr != sample_rate:
|
127 |
-
resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
|
128 |
-
init_audio = resample_tf(init_audio)
|
129 |
-
|
130 |
-
audio_length = init_audio.shape[-1]
|
131 |
-
|
132 |
-
if audio_length > sample_size:
|
133 |
-
|
134 |
-
input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length
|
135 |
-
|
136 |
-
init_audio = (sample_rate, init_audio)
|
137 |
-
|
138 |
-
def progress_callback(callback_info):
|
139 |
-
global preview_images
|
140 |
-
denoised = callback_info["denoised"]
|
141 |
-
current_step = callback_info["i"]
|
142 |
-
sigma = callback_info["sigma"]
|
143 |
-
|
144 |
-
if (current_step - 1) % preview_every == 0:
|
145 |
-
if model.pretransform is not None:
|
146 |
-
denoised = model.pretransform.decode(denoised)
|
147 |
-
denoised = rearrange(denoised, "b d n -> d (b n)")
|
148 |
-
denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
149 |
-
audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
|
150 |
-
preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
|
151 |
-
|
152 |
-
# If inpainting, send mask args
|
153 |
-
# This will definitely change in the future
|
154 |
-
if mask_cropfrom is not None:
|
155 |
-
mask_args = {
|
156 |
-
"cropfrom": mask_cropfrom,
|
157 |
-
"pastefrom": mask_pastefrom,
|
158 |
-
"pasteto": mask_pasteto,
|
159 |
-
"maskstart": mask_maskstart,
|
160 |
-
"maskend": mask_maskend,
|
161 |
-
"softnessL": mask_softnessL,
|
162 |
-
"softnessR": mask_softnessR,
|
163 |
-
"marination": mask_marination,
|
164 |
-
}
|
165 |
-
else:
|
166 |
-
mask_args = None
|
167 |
-
|
168 |
-
# Do the audio generation
|
169 |
-
audio = generate_diffusion_cond(
|
170 |
-
model,
|
171 |
-
conditioning=conditioning,
|
172 |
-
negative_conditioning=negative_conditioning,
|
173 |
-
steps=steps,
|
174 |
-
cfg_scale=cfg_scale,
|
175 |
-
batch_size=batch_size,
|
176 |
-
sample_size=input_sample_size,
|
177 |
-
sample_rate=sample_rate,
|
178 |
-
seed=seed,
|
179 |
-
device=device,
|
180 |
-
sampler_type=sampler_type,
|
181 |
-
sigma_min=sigma_min,
|
182 |
-
sigma_max=sigma_max,
|
183 |
-
init_audio=init_audio,
|
184 |
-
init_noise_level=init_noise_level,
|
185 |
-
mask_args = mask_args,
|
186 |
-
callback = progress_callback if preview_every is not None else None,
|
187 |
-
scale_phi = cfg_rescale
|
188 |
-
)
|
189 |
-
|
190 |
-
# Convert to WAV file
|
191 |
-
audio = rearrange(audio, "b d n -> d (b n)")
|
192 |
-
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
193 |
-
torchaudio.save("output.wav", audio, sample_rate)
|
194 |
-
|
195 |
-
# Let's look at a nice spectrogram too
|
196 |
-
audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)
|
197 |
-
|
198 |
-
return ("output.wav", [audio_spectrogram, *preview_images])
|
199 |
-
|
200 |
-
def generate_uncond(
|
201 |
-
steps=250,
|
202 |
-
seed=-1,
|
203 |
-
sampler_type="dpmpp-3m-sde",
|
204 |
-
sigma_min=0.03,
|
205 |
-
sigma_max=1000,
|
206 |
-
use_init=False,
|
207 |
-
init_audio=None,
|
208 |
-
init_noise_level=1.0,
|
209 |
-
batch_size=1,
|
210 |
-
preview_every=None
|
211 |
-
):
|
212 |
-
|
213 |
-
global preview_images
|
214 |
-
|
215 |
-
preview_images = []
|
216 |
-
|
217 |
-
if torch.cuda.is_available():
|
218 |
-
torch.cuda.empty_cache()
|
219 |
-
gc.collect()
|
220 |
-
|
221 |
-
#Get the device from the model
|
222 |
-
device = next(model.parameters()).device
|
223 |
-
|
224 |
-
seed = int(seed)
|
225 |
-
|
226 |
-
if not use_init:
|
227 |
-
init_audio = None
|
228 |
-
|
229 |
-
input_sample_size = sample_size
|
230 |
-
|
231 |
-
if init_audio is not None:
|
232 |
-
in_sr, init_audio = init_audio
|
233 |
-
# Turn into torch tensor, converting from int16 to float32
|
234 |
-
init_audio = torch.from_numpy(init_audio).float().div(32767)
|
235 |
-
|
236 |
-
if init_audio.dim() == 1:
|
237 |
-
init_audio = init_audio.unsqueeze(0) # [1, n]
|
238 |
-
elif init_audio.dim() == 2:
|
239 |
-
init_audio = init_audio.transpose(0, 1) # [n, 2] -> [2, n]
|
240 |
-
|
241 |
-
if in_sr != sample_rate:
|
242 |
-
resample_tf = T.Resample(in_sr, sample_rate).to(init_audio.device)
|
243 |
-
init_audio = resample_tf(init_audio)
|
244 |
-
|
245 |
-
audio_length = init_audio.shape[-1]
|
246 |
-
|
247 |
-
if audio_length > sample_size:
|
248 |
-
|
249 |
-
input_sample_size = audio_length + (model.min_input_length - (audio_length % model.min_input_length)) % model.min_input_length
|
250 |
-
|
251 |
-
init_audio = (sample_rate, init_audio)
|
252 |
-
|
253 |
-
def progress_callback(callback_info):
|
254 |
-
global preview_images
|
255 |
-
denoised = callback_info["denoised"]
|
256 |
-
current_step = callback_info["i"]
|
257 |
-
sigma = callback_info["sigma"]
|
258 |
-
|
259 |
-
if (current_step - 1) % preview_every == 0:
|
260 |
-
|
261 |
-
if model.pretransform is not None:
|
262 |
-
denoised = model.pretransform.decode(denoised)
|
263 |
-
|
264 |
-
denoised = rearrange(denoised, "b d n -> d (b n)")
|
265 |
-
|
266 |
-
denoised = denoised.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
267 |
-
|
268 |
-
audio_spectrogram = audio_spectrogram_image(denoised, sample_rate=sample_rate)
|
269 |
-
|
270 |
-
preview_images.append((audio_spectrogram, f"Step {current_step} sigma={sigma:.3f})"))
|
271 |
-
|
272 |
-
audio = generate_diffusion_uncond(
|
273 |
-
model,
|
274 |
-
steps=steps,
|
275 |
-
batch_size=batch_size,
|
276 |
-
sample_size=input_sample_size,
|
277 |
-
seed=seed,
|
278 |
-
device=device,
|
279 |
-
sampler_type=sampler_type,
|
280 |
-
sigma_min=sigma_min,
|
281 |
-
sigma_max=sigma_max,
|
282 |
-
init_audio=init_audio,
|
283 |
-
init_noise_level=init_noise_level,
|
284 |
-
callback = progress_callback if preview_every is not None else None
|
285 |
-
)
|
286 |
-
|
287 |
-
audio = rearrange(audio, "b d n -> d (b n)")
|
288 |
-
|
289 |
-
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
290 |
-
|
291 |
-
torchaudio.save("output.wav", audio, sample_rate)
|
292 |
-
|
293 |
-
audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)
|
294 |
-
|
295 |
-
return ("output.wav", [audio_spectrogram, *preview_images])
|
296 |
-
|
297 |
-
def generate_lm(
|
298 |
-
temperature=1.0,
|
299 |
-
top_p=0.95,
|
300 |
-
top_k=0,
|
301 |
-
batch_size=1,
|
302 |
-
):
|
303 |
-
|
304 |
-
if torch.cuda.is_available():
|
305 |
-
torch.cuda.empty_cache()
|
306 |
-
gc.collect()
|
307 |
-
|
308 |
-
#Get the device from the model
|
309 |
-
device = next(model.parameters()).device
|
310 |
-
|
311 |
-
audio = model.generate_audio(
|
312 |
-
batch_size=batch_size,
|
313 |
-
max_gen_len = sample_size//model.pretransform.downsampling_ratio,
|
314 |
-
conditioning=None,
|
315 |
-
temp=temperature,
|
316 |
-
top_p=top_p,
|
317 |
-
top_k=top_k,
|
318 |
-
use_cache=True
|
319 |
-
)
|
320 |
-
|
321 |
-
audio = rearrange(audio, "b d n -> d (b n)")
|
322 |
-
|
323 |
-
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
324 |
-
|
325 |
-
torchaudio.save("output.wav", audio, sample_rate)
|
326 |
-
|
327 |
-
audio_spectrogram = audio_spectrogram_image(audio, sample_rate=sample_rate)
|
328 |
-
|
329 |
-
return ("output.wav", [audio_spectrogram])
|
330 |
-
|
331 |
-
|
332 |
-
def create_uncond_sampling_ui(model_config):
|
333 |
-
generate_button = gr.Button("Generate", variant='primary', scale=1)
|
334 |
-
|
335 |
-
with gr.Row(equal_height=False):
|
336 |
-
with gr.Column():
|
337 |
-
with gr.Row():
|
338 |
-
# Steps slider
|
339 |
-
steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps")
|
340 |
-
|
341 |
-
with gr.Accordion("Sampler params", open=False):
|
342 |
-
|
343 |
-
# Seed
|
344 |
-
seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1")
|
345 |
-
|
346 |
-
# Sampler params
|
347 |
-
with gr.Row():
|
348 |
-
sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde")
|
349 |
-
sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min")
|
350 |
-
sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max")
|
351 |
-
|
352 |
-
with gr.Accordion("Init audio", open=False):
|
353 |
-
init_audio_checkbox = gr.Checkbox(label="Use init audio")
|
354 |
-
init_audio_input = gr.Audio(label="Init audio")
|
355 |
-
init_noise_level_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.01, value=0.1, label="Init noise level")
|
356 |
-
|
357 |
-
with gr.Column():
|
358 |
-
audio_output = gr.Audio(label="Output audio", interactive=False)
|
359 |
-
audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False)
|
360 |
-
send_to_init_button = gr.Button("Send to init audio", scale=1)
|
361 |
-
send_to_init_button.click(fn=lambda audio: audio, inputs=[audio_output], outputs=[init_audio_input])
|
362 |
-
|
363 |
-
generate_button.click(fn=generate_uncond,
|
364 |
-
inputs=[
|
365 |
-
steps_slider,
|
366 |
-
seed_textbox,
|
367 |
-
sampler_type_dropdown,
|
368 |
-
sigma_min_slider,
|
369 |
-
sigma_max_slider,
|
370 |
-
init_audio_checkbox,
|
371 |
-
init_audio_input,
|
372 |
-
init_noise_level_slider,
|
373 |
-
],
|
374 |
-
outputs=[
|
375 |
-
audio_output,
|
376 |
-
audio_spectrogram_output
|
377 |
-
],
|
378 |
-
api_name="generate")
|
379 |
-
|
380 |
-
def create_sampling_ui(model_config, inpainting=False):
|
381 |
-
with gr.Row():
|
382 |
-
with gr.Column(scale=6):
|
383 |
-
prompt = gr.Textbox(show_label=False, placeholder="Prompt")
|
384 |
-
negative_prompt = gr.Textbox(show_label=False, placeholder="Negative prompt")
|
385 |
-
generate_button = gr.Button("Generate", variant='primary', scale=1)
|
386 |
-
|
387 |
-
model_conditioning_config = model_config["model"].get("conditioning", None)
|
388 |
-
|
389 |
-
has_seconds_start = False
|
390 |
-
has_seconds_total = False
|
391 |
-
|
392 |
-
if model_conditioning_config is not None:
|
393 |
-
for conditioning_config in model_conditioning_config["configs"]:
|
394 |
-
if conditioning_config["id"] == "seconds_start":
|
395 |
-
has_seconds_start = True
|
396 |
-
if conditioning_config["id"] == "seconds_total":
|
397 |
-
has_seconds_total = True
|
398 |
-
|
399 |
-
with gr.Row(equal_height=False):
|
400 |
-
with gr.Column():
|
401 |
-
with gr.Row(visible = has_seconds_start or has_seconds_total):
|
402 |
-
# Timing controls
|
403 |
-
seconds_start_slider = gr.Slider(minimum=0, maximum=512, step=1, value=0, label="Seconds start", visible=has_seconds_start)
|
404 |
-
seconds_total_slider = gr.Slider(minimum=0, maximum=512, step=1, value=sample_size//sample_rate, label="Seconds total", visible=has_seconds_total)
|
405 |
-
|
406 |
-
with gr.Row():
|
407 |
-
# Steps slider
|
408 |
-
steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps")
|
409 |
-
|
410 |
-
# Preview Every slider
|
411 |
-
preview_every_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Preview Every")
|
412 |
-
|
413 |
-
# CFG scale
|
414 |
-
cfg_scale_slider = gr.Slider(minimum=0.0, maximum=25.0, step=0.1, value=7.0, label="CFG scale")
|
415 |
-
|
416 |
-
with gr.Accordion("Sampler params", open=False):
|
417 |
-
|
418 |
-
# Seed
|
419 |
-
seed_textbox = gr.Textbox(label="Seed (set to -1 for random seed)", value="-1")
|
420 |
-
|
421 |
-
# Sampler params
|
422 |
-
with gr.Row():
|
423 |
-
sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde")
|
424 |
-
sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min")
|
425 |
-
sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max")
|
426 |
-
cfg_rescale_slider = gr.Slider(minimum=0.0, maximum=1, step=0.01, value=0.0, label="CFG rescale amount")
|
427 |
-
|
428 |
-
if inpainting:
|
429 |
-
# Inpainting Tab
|
430 |
-
with gr.Accordion("Inpainting", open=False):
|
431 |
-
sigma_max_slider.maximum=1000
|
432 |
-
|
433 |
-
init_audio_checkbox = gr.Checkbox(label="Do inpainting")
|
434 |
-
init_audio_input = gr.Audio(label="Init audio")
|
435 |
-
init_noise_level_slider = gr.Slider(minimum=0.1, maximum=100.0, step=0.1, value=80, label="Init audio noise level", visible=False) # hide this
|
436 |
-
|
437 |
-
mask_cropfrom_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Crop From %")
|
438 |
-
mask_pastefrom_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Paste From %")
|
439 |
-
mask_pasteto_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=100, label="Paste To %")
|
440 |
-
|
441 |
-
mask_maskstart_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=50, label="Mask Start %")
|
442 |
-
mask_maskend_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=100, label="Mask End %")
|
443 |
-
mask_softnessL_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Softmask Left Crossfade Length %")
|
444 |
-
mask_softnessR_slider = gr.Slider(minimum=0.0, maximum=100.0, step=0.1, value=0, label="Softmask Right Crossfade Length %")
|
445 |
-
mask_marination_slider = gr.Slider(minimum=0.0, maximum=1, step=0.0001, value=0, label="Marination level", visible=False) # still working on the usefulness of this
|
446 |
-
|
447 |
-
inputs = [prompt,
|
448 |
-
negative_prompt,
|
449 |
-
seconds_start_slider,
|
450 |
-
seconds_total_slider,
|
451 |
-
cfg_scale_slider,
|
452 |
-
steps_slider,
|
453 |
-
preview_every_slider,
|
454 |
-
seed_textbox,
|
455 |
-
sampler_type_dropdown,
|
456 |
-
sigma_min_slider,
|
457 |
-
sigma_max_slider,
|
458 |
-
cfg_rescale_slider,
|
459 |
-
init_audio_checkbox,
|
460 |
-
init_audio_input,
|
461 |
-
init_noise_level_slider,
|
462 |
-
mask_cropfrom_slider,
|
463 |
-
mask_pastefrom_slider,
|
464 |
-
mask_pasteto_slider,
|
465 |
-
mask_maskstart_slider,
|
466 |
-
mask_maskend_slider,
|
467 |
-
mask_softnessL_slider,
|
468 |
-
mask_softnessR_slider,
|
469 |
-
mask_marination_slider
|
470 |
-
]
|
471 |
-
else:
|
472 |
-
# Default generation tab
|
473 |
-
with gr.Accordion("Init audio", open=False):
|
474 |
-
init_audio_checkbox = gr.Checkbox(label="Use init audio")
|
475 |
-
init_audio_input = gr.Audio(label="Init audio")
|
476 |
-
init_noise_level_slider = gr.Slider(minimum=0.1, maximum=100.0, step=0.01, value=0.1, label="Init noise level")
|
477 |
-
|
478 |
-
inputs = [prompt,
|
479 |
-
negative_prompt,
|
480 |
-
seconds_start_slider,
|
481 |
-
seconds_total_slider,
|
482 |
-
cfg_scale_slider,
|
483 |
-
steps_slider,
|
484 |
-
preview_every_slider,
|
485 |
-
seed_textbox,
|
486 |
-
sampler_type_dropdown,
|
487 |
-
sigma_min_slider,
|
488 |
-
sigma_max_slider,
|
489 |
-
cfg_rescale_slider,
|
490 |
-
init_audio_checkbox,
|
491 |
-
init_audio_input,
|
492 |
-
init_noise_level_slider
|
493 |
-
]
|
494 |
-
|
495 |
-
with gr.Column():
|
496 |
-
audio_output = gr.Audio(label="Output audio", interactive=False)
|
497 |
-
audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False)
|
498 |
-
send_to_init_button = gr.Button("Send to init audio", scale=1)
|
499 |
-
send_to_init_button.click(fn=lambda audio: audio, inputs=[audio_output], outputs=[init_audio_input])
|
500 |
-
|
501 |
-
generate_button.click(fn=generate_cond,
|
502 |
-
inputs=inputs,
|
503 |
-
outputs=[
|
504 |
-
audio_output,
|
505 |
-
audio_spectrogram_output
|
506 |
-
],
|
507 |
-
api_name="generate")
|
508 |
-
|
509 |
-
|
510 |
-
def create_txt2audio_ui(model_config):
|
511 |
-
with gr.Blocks() as ui:
|
512 |
-
with gr.Tab("Generation"):
|
513 |
-
create_sampling_ui(model_config)
|
514 |
-
with gr.Tab("Inpainting"):
|
515 |
-
create_sampling_ui(model_config, inpainting=True)
|
516 |
-
return ui
|
517 |
-
|
518 |
-
def create_diffusion_uncond_ui(model_config):
|
519 |
-
with gr.Blocks() as ui:
|
520 |
-
create_uncond_sampling_ui(model_config)
|
521 |
-
|
522 |
-
return ui
|
523 |
-
|
524 |
-
def autoencoder_process(audio, latent_noise, n_quantizers):
|
525 |
-
if torch.cuda.is_available():
|
526 |
-
torch.cuda.empty_cache()
|
527 |
-
gc.collect()
|
528 |
-
|
529 |
-
#Get the device from the model
|
530 |
-
device = next(model.parameters()).device
|
531 |
-
|
532 |
-
in_sr, audio = audio
|
533 |
-
|
534 |
-
audio = torch.from_numpy(audio).float().div(32767).to(device)
|
535 |
-
|
536 |
-
if audio.dim() == 1:
|
537 |
-
audio = audio.unsqueeze(0)
|
538 |
-
else:
|
539 |
-
audio = audio.transpose(0, 1)
|
540 |
-
|
541 |
-
audio = model.preprocess_audio_for_encoder(audio, in_sr)
|
542 |
-
# Note: If you need to do chunked encoding, to reduce VRAM,
|
543 |
-
# then add these arguments to encode_audio and decode_audio: chunked=True, overlap=32, chunk_size=128
|
544 |
-
# To turn it off, do chunked=False
|
545 |
-
# Optimal overlap and chunk_size values will depend on the model.
|
546 |
-
# See encode_audio & decode_audio in autoencoders.py for more info
|
547 |
-
# Get dtype of model
|
548 |
-
dtype = next(model.parameters()).dtype
|
549 |
-
|
550 |
-
audio = audio.to(dtype)
|
551 |
-
|
552 |
-
if n_quantizers > 0:
|
553 |
-
latents = model.encode_audio(audio, chunked=False, n_quantizers=n_quantizers)
|
554 |
-
else:
|
555 |
-
latents = model.encode_audio(audio, chunked=False)
|
556 |
-
|
557 |
-
if latent_noise > 0:
|
558 |
-
latents = latents + torch.randn_like(latents) * latent_noise
|
559 |
-
|
560 |
-
audio = model.decode_audio(latents, chunked=False)
|
561 |
-
|
562 |
-
audio = rearrange(audio, "b d n -> d (b n)")
|
563 |
-
|
564 |
-
audio = audio.to(torch.float32).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
565 |
-
|
566 |
-
torchaudio.save("output.wav", audio, sample_rate)
|
567 |
-
|
568 |
-
return "output.wav"
|
569 |
-
|
570 |
-
def create_autoencoder_ui(model_config):
|
571 |
-
|
572 |
-
is_dac_rvq = "model" in model_config and "bottleneck" in model_config["model"] and model_config["model"]["bottleneck"]["type"] in ["dac_rvq","dac_rvq_vae"]
|
573 |
-
|
574 |
-
if is_dac_rvq:
|
575 |
-
n_quantizers = model_config["model"]["bottleneck"]["config"]["n_codebooks"]
|
576 |
-
else:
|
577 |
-
n_quantizers = 0
|
578 |
-
|
579 |
-
with gr.Blocks() as ui:
|
580 |
-
input_audio = gr.Audio(label="Input audio")
|
581 |
-
output_audio = gr.Audio(label="Output audio", interactive=False)
|
582 |
-
n_quantizers_slider = gr.Slider(minimum=1, maximum=n_quantizers, step=1, value=n_quantizers, label="# quantizers", visible=is_dac_rvq)
|
583 |
-
latent_noise_slider = gr.Slider(minimum=0.0, maximum=10.0, step=0.001, value=0.0, label="Add latent noise")
|
584 |
-
process_button = gr.Button("Process", variant='primary', scale=1)
|
585 |
-
process_button.click(fn=autoencoder_process, inputs=[input_audio, latent_noise_slider, n_quantizers_slider], outputs=output_audio, api_name="process")
|
586 |
-
|
587 |
-
return ui
|
588 |
-
|
589 |
-
def diffusion_prior_process(audio, steps, sampler_type, sigma_min, sigma_max):
|
590 |
-
|
591 |
-
if torch.cuda.is_available():
|
592 |
-
torch.cuda.empty_cache()
|
593 |
-
gc.collect()
|
594 |
-
|
595 |
-
#Get the device from the model
|
596 |
-
device = next(model.parameters()).device
|
597 |
-
|
598 |
-
in_sr, audio = audio
|
599 |
-
|
600 |
-
audio = torch.from_numpy(audio).float().div(32767).to(device)
|
601 |
-
|
602 |
-
if audio.dim() == 1:
|
603 |
-
audio = audio.unsqueeze(0) # [1, n]
|
604 |
-
elif audio.dim() == 2:
|
605 |
-
audio = audio.transpose(0, 1) # [n, 2] -> [2, n]
|
606 |
-
|
607 |
-
audio = audio.unsqueeze(0)
|
608 |
-
|
609 |
-
audio = model.stereoize(audio, in_sr, steps, sampler_kwargs={"sampler_type": sampler_type, "sigma_min": sigma_min, "sigma_max": sigma_max})
|
610 |
-
|
611 |
-
audio = rearrange(audio, "b d n -> d (b n)")
|
612 |
-
|
613 |
-
audio = audio.to(torch.float32).div(torch.max(torch.abs(audio))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
614 |
-
|
615 |
-
torchaudio.save("output.wav", audio, sample_rate)
|
616 |
-
|
617 |
-
return "output.wav"
|
618 |
-
|
619 |
-
def create_diffusion_prior_ui(model_config):
|
620 |
-
with gr.Blocks() as ui:
|
621 |
-
input_audio = gr.Audio(label="Input audio")
|
622 |
-
output_audio = gr.Audio(label="Output audio", interactive=False)
|
623 |
-
# Sampler params
|
624 |
-
with gr.Row():
|
625 |
-
steps_slider = gr.Slider(minimum=1, maximum=500, step=1, value=100, label="Steps")
|
626 |
-
sampler_type_dropdown = gr.Dropdown(["dpmpp-2m-sde", "dpmpp-3m-sde", "k-heun", "k-lms", "k-dpmpp-2s-ancestral", "k-dpm-2", "k-dpm-fast"], label="Sampler type", value="dpmpp-3m-sde")
|
627 |
-
sigma_min_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.01, value=0.03, label="Sigma min")
|
628 |
-
sigma_max_slider = gr.Slider(minimum=0.0, maximum=1000.0, step=0.1, value=500, label="Sigma max")
|
629 |
-
process_button = gr.Button("Process", variant='primary', scale=1)
|
630 |
-
process_button.click(fn=diffusion_prior_process, inputs=[input_audio, steps_slider, sampler_type_dropdown, sigma_min_slider, sigma_max_slider], outputs=output_audio, api_name="process")
|
631 |
-
|
632 |
-
return ui
|
633 |
-
|
634 |
-
def create_lm_ui(model_config):
|
635 |
-
with gr.Blocks() as ui:
|
636 |
-
output_audio = gr.Audio(label="Output audio", interactive=False)
|
637 |
-
audio_spectrogram_output = gr.Gallery(label="Output spectrogram", show_label=False)
|
638 |
-
|
639 |
-
# Sampling params
|
640 |
-
with gr.Row():
|
641 |
-
temperature_slider = gr.Slider(minimum=0, maximum=5, step=0.01, value=1.0, label="Temperature")
|
642 |
-
top_p_slider = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.95, label="Top p")
|
643 |
-
top_k_slider = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Top k")
|
644 |
-
|
645 |
-
generate_button = gr.Button("Generate", variant='primary', scale=1)
|
646 |
-
generate_button.click(
|
647 |
-
fn=generate_lm,
|
648 |
-
inputs=[
|
649 |
-
temperature_slider,
|
650 |
-
top_p_slider,
|
651 |
-
top_k_slider
|
652 |
-
],
|
653 |
-
outputs=[output_audio, audio_spectrogram_output],
|
654 |
-
api_name="generate"
|
655 |
-
)
|
656 |
-
|
657 |
-
return ui
|
658 |
-
|
659 |
-
def create_ui(model_config_path=None, ckpt_path=None, pretrained_name=None, pretransform_ckpt_path=None, model_half=False):
|
660 |
-
|
661 |
-
assert (pretrained_name is not None) ^ (model_config_path is not None and ckpt_path is not None), "Must specify either pretrained name or provide a model config and checkpoint, but not both"
|
662 |
-
|
663 |
-
if model_config_path is not None:
|
664 |
-
# Load config from json file
|
665 |
-
with open(model_config_path) as f:
|
666 |
-
model_config = json.load(f)
|
667 |
-
else:
|
668 |
-
model_config = None
|
669 |
-
|
670 |
-
try:
|
671 |
-
has_mps = platform.system() == "Darwin" and torch.backends.mps.is_available()
|
672 |
-
except Exception:
|
673 |
-
# In case this version of Torch doesn't even have `torch.backends.mps`...
|
674 |
-
has_mps = False
|
675 |
-
|
676 |
-
if has_mps:
|
677 |
-
device = torch.device("mps")
|
678 |
-
elif torch.cuda.is_available():
|
679 |
-
device = torch.device("cuda")
|
680 |
-
else:
|
681 |
-
device = torch.device("cpu")
|
682 |
-
|
683 |
-
print("Using device:", device)
|
684 |
-
|
685 |
-
_, model_config = load_model(model_config, ckpt_path, pretrained_name=pretrained_name, pretransform_ckpt_path=pretransform_ckpt_path, model_half=model_half, device=device)
|
686 |
-
|
687 |
-
model_type = model_config["model_type"]
|
688 |
-
|
689 |
-
if model_type == "diffusion_cond":
|
690 |
-
ui = create_txt2audio_ui(model_config)
|
691 |
-
elif model_type == "diffusion_uncond":
|
692 |
-
ui = create_diffusion_uncond_ui(model_config)
|
693 |
-
elif model_type == "autoencoder" or model_type == "diffusion_autoencoder":
|
694 |
-
ui = create_autoencoder_ui(model_config)
|
695 |
-
elif model_type == "diffusion_prior":
|
696 |
-
ui = create_diffusion_prior_ui(model_config)
|
697 |
-
elif model_type == "lm":
|
698 |
-
ui = create_lm_ui(model_config)
|
699 |
-
|
700 |
-
return ui
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .factory import create_model_from_config, create_model_from_config_path
|
|
|
|
stable/build/lib/stable_audio_tools/models/adp.py
DELETED
@@ -1,1588 +0,0 @@
|
|
1 |
-
# Copied and modified from https://github.com/archinetai/audio-diffusion-pytorch/blob/v0.0.94/audio_diffusion_pytorch/modules.py under MIT License
|
2 |
-
# License can be found in LICENSES/LICENSE_ADP.txt
|
3 |
-
|
4 |
-
import math
|
5 |
-
from inspect import isfunction
|
6 |
-
from math import ceil, floor, log, pi, log2
|
7 |
-
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
8 |
-
from packaging import version
|
9 |
-
|
10 |
-
import torch
|
11 |
-
import torch.nn as nn
|
12 |
-
from einops import rearrange, reduce, repeat
|
13 |
-
from einops.layers.torch import Rearrange
|
14 |
-
from einops_exts import rearrange_many
|
15 |
-
from torch import Tensor, einsum
|
16 |
-
from torch.backends.cuda import sdp_kernel
|
17 |
-
from torch.nn import functional as F
|
18 |
-
from dac.nn.layers import Snake1d
|
19 |
-
|
20 |
-
"""
|
21 |
-
Utils
|
22 |
-
"""
|
23 |
-
|
24 |
-
|
25 |
-
class ConditionedSequential(nn.Module):
|
26 |
-
def __init__(self, *modules):
|
27 |
-
super().__init__()
|
28 |
-
self.module_list = nn.ModuleList(*modules)
|
29 |
-
|
30 |
-
def forward(self, x: Tensor, mapping: Optional[Tensor] = None):
|
31 |
-
for module in self.module_list:
|
32 |
-
x = module(x, mapping)
|
33 |
-
return x
|
34 |
-
|
35 |
-
T = TypeVar("T")
|
36 |
-
|
37 |
-
def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
|
38 |
-
if exists(val):
|
39 |
-
return val
|
40 |
-
return d() if isfunction(d) else d
|
41 |
-
|
42 |
-
def exists(val: Optional[T]) -> T:
|
43 |
-
return val is not None
|
44 |
-
|
45 |
-
def closest_power_2(x: float) -> int:
|
46 |
-
exponent = log2(x)
|
47 |
-
distance_fn = lambda z: abs(x - 2 ** z) # noqa
|
48 |
-
exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
|
49 |
-
return 2 ** int(exponent_closest)
|
50 |
-
|
51 |
-
def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
|
52 |
-
return_dicts: Tuple[Dict, Dict] = ({}, {})
|
53 |
-
for key in d.keys():
|
54 |
-
no_prefix = int(not key.startswith(prefix))
|
55 |
-
return_dicts[no_prefix][key] = d[key]
|
56 |
-
return return_dicts
|
57 |
-
|
58 |
-
def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
|
59 |
-
kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
|
60 |
-
if keep_prefix:
|
61 |
-
return kwargs_with_prefix, kwargs
|
62 |
-
kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
|
63 |
-
return kwargs_no_prefix, kwargs
|
64 |
-
|
65 |
-
"""
|
66 |
-
Convolutional Blocks
|
67 |
-
"""
|
68 |
-
import typing as tp
|
69 |
-
|
70 |
-
# Copied from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/conv.py under MIT License
|
71 |
-
# License available in LICENSES/LICENSE_META.txt
|
72 |
-
|
73 |
-
def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
|
74 |
-
padding_total: int = 0) -> int:
|
75 |
-
"""See `pad_for_conv1d`."""
|
76 |
-
length = x.shape[-1]
|
77 |
-
n_frames = (length - kernel_size + padding_total) / stride + 1
|
78 |
-
ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
|
79 |
-
return ideal_length - length
|
80 |
-
|
81 |
-
|
82 |
-
def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
|
83 |
-
"""Pad for a convolution to make sure that the last window is full.
|
84 |
-
Extra padding is added at the end. This is required to ensure that we can rebuild
|
85 |
-
an output of the same length, as otherwise, even with padding, some time steps
|
86 |
-
might get removed.
|
87 |
-
For instance, with total padding = 4, kernel size = 4, stride = 2:
|
88 |
-
0 0 1 2 3 4 5 0 0 # (0s are padding)
|
89 |
-
1 2 3 # (output frames of a convolution, last 0 is never used)
|
90 |
-
0 0 1 2 3 4 5 0 # (output of tr. conv., but pos. 5 is going to get removed as padding)
|
91 |
-
1 2 3 4 # once you removed padding, we are missing one time step !
|
92 |
-
"""
|
93 |
-
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
94 |
-
return F.pad(x, (0, extra_padding))
|
95 |
-
|
96 |
-
|
97 |
-
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
|
98 |
-
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
99 |
-
If this is the case, we insert extra 0 padding to the right before the reflection happen.
|
100 |
-
"""
|
101 |
-
length = x.shape[-1]
|
102 |
-
padding_left, padding_right = paddings
|
103 |
-
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
104 |
-
if mode == 'reflect':
|
105 |
-
max_pad = max(padding_left, padding_right)
|
106 |
-
extra_pad = 0
|
107 |
-
if length <= max_pad:
|
108 |
-
extra_pad = max_pad - length + 1
|
109 |
-
x = F.pad(x, (0, extra_pad))
|
110 |
-
padded = F.pad(x, paddings, mode, value)
|
111 |
-
end = padded.shape[-1] - extra_pad
|
112 |
-
return padded[..., :end]
|
113 |
-
else:
|
114 |
-
return F.pad(x, paddings, mode, value)
|
115 |
-
|
116 |
-
|
117 |
-
def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
|
118 |
-
"""Remove padding from x, handling properly zero padding. Only for 1d!"""
|
119 |
-
padding_left, padding_right = paddings
|
120 |
-
assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
|
121 |
-
assert (padding_left + padding_right) <= x.shape[-1]
|
122 |
-
end = x.shape[-1] - padding_right
|
123 |
-
return x[..., padding_left: end]
|
124 |
-
|
125 |
-
|
126 |
-
class Conv1d(nn.Conv1d):
|
127 |
-
def __init__(self, *args, **kwargs):
|
128 |
-
super().__init__(*args, **kwargs)
|
129 |
-
|
130 |
-
def forward(self, x: Tensor, causal=False) -> Tensor:
|
131 |
-
kernel_size = self.kernel_size[0]
|
132 |
-
stride = self.stride[0]
|
133 |
-
dilation = self.dilation[0]
|
134 |
-
kernel_size = (kernel_size - 1) * dilation + 1 # effective kernel size with dilations
|
135 |
-
padding_total = kernel_size - stride
|
136 |
-
extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
|
137 |
-
if causal:
|
138 |
-
# Left padding for causal
|
139 |
-
x = pad1d(x, (padding_total, extra_padding))
|
140 |
-
else:
|
141 |
-
# Asymmetric padding required for odd strides
|
142 |
-
padding_right = padding_total // 2
|
143 |
-
padding_left = padding_total - padding_right
|
144 |
-
x = pad1d(x, (padding_left, padding_right + extra_padding))
|
145 |
-
return super().forward(x)
|
146 |
-
|
147 |
-
class ConvTranspose1d(nn.ConvTranspose1d):
|
148 |
-
def __init__(self, *args, **kwargs):
|
149 |
-
super().__init__(*args, **kwargs)
|
150 |
-
|
151 |
-
def forward(self, x: Tensor, causal=False) -> Tensor:
|
152 |
-
kernel_size = self.kernel_size[0]
|
153 |
-
stride = self.stride[0]
|
154 |
-
padding_total = kernel_size - stride
|
155 |
-
|
156 |
-
y = super().forward(x)
|
157 |
-
|
158 |
-
# We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
|
159 |
-
# removed at the very end, when keeping only the right length for the output,
|
160 |
-
# as removing it here would require also passing the length at the matching layer
|
161 |
-
# in the encoder.
|
162 |
-
if causal:
|
163 |
-
padding_right = ceil(padding_total)
|
164 |
-
padding_left = padding_total - padding_right
|
165 |
-
y = unpad1d(y, (padding_left, padding_right))
|
166 |
-
else:
|
167 |
-
# Asymmetric padding required for odd strides
|
168 |
-
padding_right = padding_total // 2
|
169 |
-
padding_left = padding_total - padding_right
|
170 |
-
y = unpad1d(y, (padding_left, padding_right))
|
171 |
-
return y
|
172 |
-
|
173 |
-
|
174 |
-
def Downsample1d(
|
175 |
-
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
|
176 |
-
) -> nn.Module:
|
177 |
-
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"
|
178 |
-
|
179 |
-
return Conv1d(
|
180 |
-
in_channels=in_channels,
|
181 |
-
out_channels=out_channels,
|
182 |
-
kernel_size=factor * kernel_multiplier + 1,
|
183 |
-
stride=factor
|
184 |
-
)
|
185 |
-
|
186 |
-
|
187 |
-
def Upsample1d(
|
188 |
-
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
|
189 |
-
) -> nn.Module:
|
190 |
-
|
191 |
-
if factor == 1:
|
192 |
-
return Conv1d(
|
193 |
-
in_channels=in_channels, out_channels=out_channels, kernel_size=3
|
194 |
-
)
|
195 |
-
|
196 |
-
if use_nearest:
|
197 |
-
return nn.Sequential(
|
198 |
-
nn.Upsample(scale_factor=factor, mode="nearest"),
|
199 |
-
Conv1d(
|
200 |
-
in_channels=in_channels,
|
201 |
-
out_channels=out_channels,
|
202 |
-
kernel_size=3
|
203 |
-
),
|
204 |
-
)
|
205 |
-
else:
|
206 |
-
return ConvTranspose1d(
|
207 |
-
in_channels=in_channels,
|
208 |
-
out_channels=out_channels,
|
209 |
-
kernel_size=factor * 2,
|
210 |
-
stride=factor
|
211 |
-
)
|
212 |
-
|
213 |
-
|
214 |
-
class ConvBlock1d(nn.Module):
|
215 |
-
def __init__(
|
216 |
-
self,
|
217 |
-
in_channels: int,
|
218 |
-
out_channels: int,
|
219 |
-
*,
|
220 |
-
kernel_size: int = 3,
|
221 |
-
stride: int = 1,
|
222 |
-
dilation: int = 1,
|
223 |
-
num_groups: int = 8,
|
224 |
-
use_norm: bool = True,
|
225 |
-
use_snake: bool = False
|
226 |
-
) -> None:
|
227 |
-
super().__init__()
|
228 |
-
|
229 |
-
self.groupnorm = (
|
230 |
-
nn.GroupNorm(num_groups=num_groups, num_channels=in_channels)
|
231 |
-
if use_norm
|
232 |
-
else nn.Identity()
|
233 |
-
)
|
234 |
-
|
235 |
-
if use_snake:
|
236 |
-
self.activation = Snake1d(in_channels)
|
237 |
-
else:
|
238 |
-
self.activation = nn.SiLU()
|
239 |
-
|
240 |
-
self.project = Conv1d(
|
241 |
-
in_channels=in_channels,
|
242 |
-
out_channels=out_channels,
|
243 |
-
kernel_size=kernel_size,
|
244 |
-
stride=stride,
|
245 |
-
dilation=dilation,
|
246 |
-
)
|
247 |
-
|
248 |
-
def forward(
|
249 |
-
self, x: Tensor, scale_shift: Optional[Tuple[Tensor, Tensor]] = None, causal=False
|
250 |
-
) -> Tensor:
|
251 |
-
x = self.groupnorm(x)
|
252 |
-
if exists(scale_shift):
|
253 |
-
scale, shift = scale_shift
|
254 |
-
x = x * (scale + 1) + shift
|
255 |
-
x = self.activation(x)
|
256 |
-
return self.project(x, causal=causal)
|
257 |
-
|
258 |
-
|
259 |
-
class MappingToScaleShift(nn.Module):
|
260 |
-
def __init__(
|
261 |
-
self,
|
262 |
-
features: int,
|
263 |
-
channels: int,
|
264 |
-
):
|
265 |
-
super().__init__()
|
266 |
-
|
267 |
-
self.to_scale_shift = nn.Sequential(
|
268 |
-
nn.SiLU(),
|
269 |
-
nn.Linear(in_features=features, out_features=channels * 2),
|
270 |
-
)
|
271 |
-
|
272 |
-
def forward(self, mapping: Tensor) -> Tuple[Tensor, Tensor]:
|
273 |
-
scale_shift = self.to_scale_shift(mapping)
|
274 |
-
scale_shift = rearrange(scale_shift, "b c -> b c 1")
|
275 |
-
scale, shift = scale_shift.chunk(2, dim=1)
|
276 |
-
return scale, shift
|
277 |
-
|
278 |
-
|
279 |
-
class ResnetBlock1d(nn.Module):
|
280 |
-
def __init__(
|
281 |
-
self,
|
282 |
-
in_channels: int,
|
283 |
-
out_channels: int,
|
284 |
-
*,
|
285 |
-
kernel_size: int = 3,
|
286 |
-
stride: int = 1,
|
287 |
-
dilation: int = 1,
|
288 |
-
use_norm: bool = True,
|
289 |
-
use_snake: bool = False,
|
290 |
-
num_groups: int = 8,
|
291 |
-
context_mapping_features: Optional[int] = None,
|
292 |
-
) -> None:
|
293 |
-
super().__init__()
|
294 |
-
|
295 |
-
self.use_mapping = exists(context_mapping_features)
|
296 |
-
|
297 |
-
self.block1 = ConvBlock1d(
|
298 |
-
in_channels=in_channels,
|
299 |
-
out_channels=out_channels,
|
300 |
-
kernel_size=kernel_size,
|
301 |
-
stride=stride,
|
302 |
-
dilation=dilation,
|
303 |
-
use_norm=use_norm,
|
304 |
-
num_groups=num_groups,
|
305 |
-
use_snake=use_snake
|
306 |
-
)
|
307 |
-
|
308 |
-
if self.use_mapping:
|
309 |
-
assert exists(context_mapping_features)
|
310 |
-
self.to_scale_shift = MappingToScaleShift(
|
311 |
-
features=context_mapping_features, channels=out_channels
|
312 |
-
)
|
313 |
-
|
314 |
-
self.block2 = ConvBlock1d(
|
315 |
-
in_channels=out_channels,
|
316 |
-
out_channels=out_channels,
|
317 |
-
use_norm=use_norm,
|
318 |
-
num_groups=num_groups,
|
319 |
-
use_snake=use_snake
|
320 |
-
)
|
321 |
-
|
322 |
-
self.to_out = (
|
323 |
-
Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1)
|
324 |
-
if in_channels != out_channels
|
325 |
-
else nn.Identity()
|
326 |
-
)
|
327 |
-
|
328 |
-
def forward(self, x: Tensor, mapping: Optional[Tensor] = None, causal=False) -> Tensor:
|
329 |
-
assert_message = "context mapping required if context_mapping_features > 0"
|
330 |
-
assert not (self.use_mapping ^ exists(mapping)), assert_message
|
331 |
-
|
332 |
-
h = self.block1(x, causal=causal)
|
333 |
-
|
334 |
-
scale_shift = None
|
335 |
-
if self.use_mapping:
|
336 |
-
scale_shift = self.to_scale_shift(mapping)
|
337 |
-
|
338 |
-
h = self.block2(h, scale_shift=scale_shift, causal=causal)
|
339 |
-
|
340 |
-
return h + self.to_out(x)
|
341 |
-
|
342 |
-
|
343 |
-
class Patcher(nn.Module):
|
344 |
-
def __init__(
|
345 |
-
self,
|
346 |
-
in_channels: int,
|
347 |
-
out_channels: int,
|
348 |
-
patch_size: int,
|
349 |
-
context_mapping_features: Optional[int] = None,
|
350 |
-
use_snake: bool = False,
|
351 |
-
):
|
352 |
-
super().__init__()
|
353 |
-
assert_message = f"out_channels must be divisible by patch_size ({patch_size})"
|
354 |
-
assert out_channels % patch_size == 0, assert_message
|
355 |
-
self.patch_size = patch_size
|
356 |
-
|
357 |
-
self.block = ResnetBlock1d(
|
358 |
-
in_channels=in_channels,
|
359 |
-
out_channels=out_channels // patch_size,
|
360 |
-
num_groups=1,
|
361 |
-
context_mapping_features=context_mapping_features,
|
362 |
-
use_snake=use_snake
|
363 |
-
)
|
364 |
-
|
365 |
-
def forward(self, x: Tensor, mapping: Optional[Tensor] = None, causal=False) -> Tensor:
|
366 |
-
x = self.block(x, mapping, causal=causal)
|
367 |
-
x = rearrange(x, "b c (l p) -> b (c p) l", p=self.patch_size)
|
368 |
-
return x
|
369 |
-
|
370 |
-
|
371 |
-
class Unpatcher(nn.Module):
|
372 |
-
def __init__(
|
373 |
-
self,
|
374 |
-
in_channels: int,
|
375 |
-
out_channels: int,
|
376 |
-
patch_size: int,
|
377 |
-
context_mapping_features: Optional[int] = None,
|
378 |
-
use_snake: bool = False
|
379 |
-
):
|
380 |
-
super().__init__()
|
381 |
-
assert_message = f"in_channels must be divisible by patch_size ({patch_size})"
|
382 |
-
assert in_channels % patch_size == 0, assert_message
|
383 |
-
self.patch_size = patch_size
|
384 |
-
|
385 |
-
self.block = ResnetBlock1d(
|
386 |
-
in_channels=in_channels // patch_size,
|
387 |
-
out_channels=out_channels,
|
388 |
-
num_groups=1,
|
389 |
-
context_mapping_features=context_mapping_features,
|
390 |
-
use_snake=use_snake
|
391 |
-
)
|
392 |
-
|
393 |
-
def forward(self, x: Tensor, mapping: Optional[Tensor] = None, causal=False) -> Tensor:
|
394 |
-
x = rearrange(x, " b (c p) l -> b c (l p) ", p=self.patch_size)
|
395 |
-
x = self.block(x, mapping, causal=causal)
|
396 |
-
return x
|
397 |
-
|
398 |
-
|
399 |
-
"""
|
400 |
-
Attention Components
|
401 |
-
"""
|
402 |
-
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
403 |
-
mid_features = features * multiplier
|
404 |
-
return nn.Sequential(
|
405 |
-
nn.Linear(in_features=features, out_features=mid_features),
|
406 |
-
nn.GELU(),
|
407 |
-
nn.Linear(in_features=mid_features, out_features=features),
|
408 |
-
)
|
409 |
-
|
410 |
-
def add_mask(sim: Tensor, mask: Tensor) -> Tensor:
|
411 |
-
b, ndim = sim.shape[0], mask.ndim
|
412 |
-
if ndim == 3:
|
413 |
-
mask = rearrange(mask, "b n m -> b 1 n m")
|
414 |
-
if ndim == 2:
|
415 |
-
mask = repeat(mask, "n m -> b 1 n m", b=b)
|
416 |
-
max_neg_value = -torch.finfo(sim.dtype).max
|
417 |
-
sim = sim.masked_fill(~mask, max_neg_value)
|
418 |
-
return sim
|
419 |
-
|
420 |
-
def causal_mask(q: Tensor, k: Tensor) -> Tensor:
|
421 |
-
b, i, j, device = q.shape[0], q.shape[-2], k.shape[-2], q.device
|
422 |
-
mask = ~torch.ones((i, j), dtype=torch.bool, device=device).triu(j - i + 1)
|
423 |
-
mask = repeat(mask, "n m -> b n m", b=b)
|
424 |
-
return mask
|
425 |
-
|
426 |
-
class AttentionBase(nn.Module):
|
427 |
-
def __init__(
|
428 |
-
self,
|
429 |
-
features: int,
|
430 |
-
*,
|
431 |
-
head_features: int,
|
432 |
-
num_heads: int,
|
433 |
-
out_features: Optional[int] = None,
|
434 |
-
):
|
435 |
-
super().__init__()
|
436 |
-
self.scale = head_features**-0.5
|
437 |
-
self.num_heads = num_heads
|
438 |
-
mid_features = head_features * num_heads
|
439 |
-
out_features = default(out_features, features)
|
440 |
-
|
441 |
-
self.to_out = nn.Linear(
|
442 |
-
in_features=mid_features, out_features=out_features
|
443 |
-
)
|
444 |
-
|
445 |
-
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
446 |
-
|
447 |
-
if not self.use_flash:
|
448 |
-
return
|
449 |
-
|
450 |
-
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
451 |
-
|
452 |
-
if device_properties.major == 8 and device_properties.minor == 0:
|
453 |
-
# Use flash attention for A100 GPUs
|
454 |
-
self.sdp_kernel_config = (True, False, False)
|
455 |
-
else:
|
456 |
-
# Don't use flash attention for other GPUs
|
457 |
-
self.sdp_kernel_config = (False, True, True)
|
458 |
-
|
459 |
-
def forward(
|
460 |
-
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None, is_causal: bool = False
|
461 |
-
) -> Tensor:
|
462 |
-
# Split heads
|
463 |
-
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
|
464 |
-
|
465 |
-
if not self.use_flash:
|
466 |
-
if is_causal and not mask:
|
467 |
-
# Mask out future tokens for causal attention
|
468 |
-
mask = causal_mask(q, k)
|
469 |
-
|
470 |
-
# Compute similarity matrix and add eventual mask
|
471 |
-
sim = einsum("... n d, ... m d -> ... n m", q, k) * self.scale
|
472 |
-
sim = add_mask(sim, mask) if exists(mask) else sim
|
473 |
-
|
474 |
-
# Get attention matrix with softmax
|
475 |
-
attn = sim.softmax(dim=-1, dtype=torch.float32)
|
476 |
-
|
477 |
-
# Compute values
|
478 |
-
out = einsum("... n m, ... m d -> ... n d", attn, v)
|
479 |
-
else:
|
480 |
-
with sdp_kernel(*self.sdp_kernel_config):
|
481 |
-
out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, is_causal=is_causal)
|
482 |
-
|
483 |
-
out = rearrange(out, "b h n d -> b n (h d)")
|
484 |
-
return self.to_out(out)
|
485 |
-
|
486 |
-
class Attention(nn.Module):
|
487 |
-
def __init__(
|
488 |
-
self,
|
489 |
-
features: int,
|
490 |
-
*,
|
491 |
-
head_features: int,
|
492 |
-
num_heads: int,
|
493 |
-
out_features: Optional[int] = None,
|
494 |
-
context_features: Optional[int] = None,
|
495 |
-
causal: bool = False,
|
496 |
-
):
|
497 |
-
super().__init__()
|
498 |
-
self.context_features = context_features
|
499 |
-
self.causal = causal
|
500 |
-
mid_features = head_features * num_heads
|
501 |
-
context_features = default(context_features, features)
|
502 |
-
|
503 |
-
self.norm = nn.LayerNorm(features)
|
504 |
-
self.norm_context = nn.LayerNorm(context_features)
|
505 |
-
self.to_q = nn.Linear(
|
506 |
-
in_features=features, out_features=mid_features, bias=False
|
507 |
-
)
|
508 |
-
self.to_kv = nn.Linear(
|
509 |
-
in_features=context_features, out_features=mid_features * 2, bias=False
|
510 |
-
)
|
511 |
-
self.attention = AttentionBase(
|
512 |
-
features,
|
513 |
-
num_heads=num_heads,
|
514 |
-
head_features=head_features,
|
515 |
-
out_features=out_features,
|
516 |
-
)
|
517 |
-
|
518 |
-
def forward(
|
519 |
-
self,
|
520 |
-
x: Tensor, # [b, n, c]
|
521 |
-
context: Optional[Tensor] = None, # [b, m, d]
|
522 |
-
context_mask: Optional[Tensor] = None, # [b, m], false is masked,
|
523 |
-
causal: Optional[bool] = False,
|
524 |
-
) -> Tensor:
|
525 |
-
assert_message = "You must provide a context when using context_features"
|
526 |
-
assert not self.context_features or exists(context), assert_message
|
527 |
-
# Use context if provided
|
528 |
-
context = default(context, x)
|
529 |
-
# Normalize then compute q from input and k,v from context
|
530 |
-
x, context = self.norm(x), self.norm_context(context)
|
531 |
-
|
532 |
-
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
533 |
-
|
534 |
-
if exists(context_mask):
|
535 |
-
# Mask out cross-attention for padding tokens
|
536 |
-
mask = repeat(context_mask, "b m -> b m d", d=v.shape[-1])
|
537 |
-
k, v = k * mask, v * mask
|
538 |
-
|
539 |
-
# Compute and return attention
|
540 |
-
return self.attention(q, k, v, is_causal=self.causal or causal)
|
541 |
-
|
542 |
-
|
543 |
-
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
544 |
-
mid_features = features * multiplier
|
545 |
-
return nn.Sequential(
|
546 |
-
nn.Linear(in_features=features, out_features=mid_features),
|
547 |
-
nn.GELU(),
|
548 |
-
nn.Linear(in_features=mid_features, out_features=features),
|
549 |
-
)
|
550 |
-
|
551 |
-
"""
|
552 |
-
Transformer Blocks
|
553 |
-
"""
|
554 |
-
|
555 |
-
|
556 |
-
class TransformerBlock(nn.Module):
|
557 |
-
def __init__(
|
558 |
-
self,
|
559 |
-
features: int,
|
560 |
-
num_heads: int,
|
561 |
-
head_features: int,
|
562 |
-
multiplier: int,
|
563 |
-
context_features: Optional[int] = None,
|
564 |
-
):
|
565 |
-
super().__init__()
|
566 |
-
|
567 |
-
self.use_cross_attention = exists(context_features) and context_features > 0
|
568 |
-
|
569 |
-
self.attention = Attention(
|
570 |
-
features=features,
|
571 |
-
num_heads=num_heads,
|
572 |
-
head_features=head_features
|
573 |
-
)
|
574 |
-
|
575 |
-
if self.use_cross_attention:
|
576 |
-
self.cross_attention = Attention(
|
577 |
-
features=features,
|
578 |
-
num_heads=num_heads,
|
579 |
-
head_features=head_features,
|
580 |
-
context_features=context_features
|
581 |
-
)
|
582 |
-
|
583 |
-
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
584 |
-
|
585 |
-
def forward(self, x: Tensor, *, context: Optional[Tensor] = None, context_mask: Optional[Tensor] = None, causal: Optional[bool] = False) -> Tensor:
|
586 |
-
x = self.attention(x, causal=causal) + x
|
587 |
-
if self.use_cross_attention:
|
588 |
-
x = self.cross_attention(x, context=context, context_mask=context_mask) + x
|
589 |
-
x = self.feed_forward(x) + x
|
590 |
-
return x
|
591 |
-
|
592 |
-
|
593 |
-
"""
|
594 |
-
Transformers
|
595 |
-
"""
|
596 |
-
|
597 |
-
|
598 |
-
class Transformer1d(nn.Module):
|
599 |
-
def __init__(
|
600 |
-
self,
|
601 |
-
num_layers: int,
|
602 |
-
channels: int,
|
603 |
-
num_heads: int,
|
604 |
-
head_features: int,
|
605 |
-
multiplier: int,
|
606 |
-
context_features: Optional[int] = None,
|
607 |
-
):
|
608 |
-
super().__init__()
|
609 |
-
|
610 |
-
self.to_in = nn.Sequential(
|
611 |
-
nn.GroupNorm(num_groups=32, num_channels=channels, eps=1e-6, affine=True),
|
612 |
-
Conv1d(
|
613 |
-
in_channels=channels,
|
614 |
-
out_channels=channels,
|
615 |
-
kernel_size=1,
|
616 |
-
),
|
617 |
-
Rearrange("b c t -> b t c"),
|
618 |
-
)
|
619 |
-
|
620 |
-
self.blocks = nn.ModuleList(
|
621 |
-
[
|
622 |
-
TransformerBlock(
|
623 |
-
features=channels,
|
624 |
-
head_features=head_features,
|
625 |
-
num_heads=num_heads,
|
626 |
-
multiplier=multiplier,
|
627 |
-
context_features=context_features,
|
628 |
-
)
|
629 |
-
for i in range(num_layers)
|
630 |
-
]
|
631 |
-
)
|
632 |
-
|
633 |
-
self.to_out = nn.Sequential(
|
634 |
-
Rearrange("b t c -> b c t"),
|
635 |
-
Conv1d(
|
636 |
-
in_channels=channels,
|
637 |
-
out_channels=channels,
|
638 |
-
kernel_size=1,
|
639 |
-
),
|
640 |
-
)
|
641 |
-
|
642 |
-
def forward(self, x: Tensor, *, context: Optional[Tensor] = None, context_mask: Optional[Tensor] = None, causal=False) -> Tensor:
|
643 |
-
x = self.to_in(x)
|
644 |
-
for block in self.blocks:
|
645 |
-
x = block(x, context=context, context_mask=context_mask, causal=causal)
|
646 |
-
x = self.to_out(x)
|
647 |
-
return x
|
648 |
-
|
649 |
-
|
650 |
-
"""
|
651 |
-
Time Embeddings
|
652 |
-
"""
|
653 |
-
|
654 |
-
|
655 |
-
class SinusoidalEmbedding(nn.Module):
|
656 |
-
def __init__(self, dim: int):
|
657 |
-
super().__init__()
|
658 |
-
self.dim = dim
|
659 |
-
|
660 |
-
def forward(self, x: Tensor) -> Tensor:
|
661 |
-
device, half_dim = x.device, self.dim // 2
|
662 |
-
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
|
663 |
-
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
664 |
-
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
|
665 |
-
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
666 |
-
|
667 |
-
|
668 |
-
class LearnedPositionalEmbedding(nn.Module):
|
669 |
-
"""Used for continuous time"""
|
670 |
-
|
671 |
-
def __init__(self, dim: int):
|
672 |
-
super().__init__()
|
673 |
-
assert (dim % 2) == 0
|
674 |
-
half_dim = dim // 2
|
675 |
-
self.weights = nn.Parameter(torch.randn(half_dim))
|
676 |
-
|
677 |
-
def forward(self, x: Tensor) -> Tensor:
|
678 |
-
x = rearrange(x, "b -> b 1")
|
679 |
-
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
|
680 |
-
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
681 |
-
fouriered = torch.cat((x, fouriered), dim=-1)
|
682 |
-
return fouriered
|
683 |
-
|
684 |
-
|
685 |
-
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
686 |
-
return nn.Sequential(
|
687 |
-
LearnedPositionalEmbedding(dim),
|
688 |
-
nn.Linear(in_features=dim + 1, out_features=out_features),
|
689 |
-
)
|
690 |
-
|
691 |
-
|
692 |
-
"""
|
693 |
-
Encoder/Decoder Components
|
694 |
-
"""
|
695 |
-
|
696 |
-
|
697 |
-
class DownsampleBlock1d(nn.Module):
|
698 |
-
def __init__(
|
699 |
-
self,
|
700 |
-
in_channels: int,
|
701 |
-
out_channels: int,
|
702 |
-
*,
|
703 |
-
factor: int,
|
704 |
-
num_groups: int,
|
705 |
-
num_layers: int,
|
706 |
-
kernel_multiplier: int = 2,
|
707 |
-
use_pre_downsample: bool = True,
|
708 |
-
use_skip: bool = False,
|
709 |
-
use_snake: bool = False,
|
710 |
-
extract_channels: int = 0,
|
711 |
-
context_channels: int = 0,
|
712 |
-
num_transformer_blocks: int = 0,
|
713 |
-
attention_heads: Optional[int] = None,
|
714 |
-
attention_features: Optional[int] = None,
|
715 |
-
attention_multiplier: Optional[int] = None,
|
716 |
-
context_mapping_features: Optional[int] = None,
|
717 |
-
context_embedding_features: Optional[int] = None,
|
718 |
-
):
|
719 |
-
super().__init__()
|
720 |
-
self.use_pre_downsample = use_pre_downsample
|
721 |
-
self.use_skip = use_skip
|
722 |
-
self.use_transformer = num_transformer_blocks > 0
|
723 |
-
self.use_extract = extract_channels > 0
|
724 |
-
self.use_context = context_channels > 0
|
725 |
-
|
726 |
-
channels = out_channels if use_pre_downsample else in_channels
|
727 |
-
|
728 |
-
self.downsample = Downsample1d(
|
729 |
-
in_channels=in_channels,
|
730 |
-
out_channels=out_channels,
|
731 |
-
factor=factor,
|
732 |
-
kernel_multiplier=kernel_multiplier,
|
733 |
-
)
|
734 |
-
|
735 |
-
self.blocks = nn.ModuleList(
|
736 |
-
[
|
737 |
-
ResnetBlock1d(
|
738 |
-
in_channels=channels + context_channels if i == 0 else channels,
|
739 |
-
out_channels=channels,
|
740 |
-
num_groups=num_groups,
|
741 |
-
context_mapping_features=context_mapping_features,
|
742 |
-
use_snake=use_snake
|
743 |
-
)
|
744 |
-
for i in range(num_layers)
|
745 |
-
]
|
746 |
-
)
|
747 |
-
|
748 |
-
if self.use_transformer:
|
749 |
-
assert (
|
750 |
-
(exists(attention_heads) or exists(attention_features))
|
751 |
-
and exists(attention_multiplier)
|
752 |
-
)
|
753 |
-
|
754 |
-
if attention_features is None and attention_heads is not None:
|
755 |
-
attention_features = channels // attention_heads
|
756 |
-
|
757 |
-
if attention_heads is None and attention_features is not None:
|
758 |
-
attention_heads = channels // attention_features
|
759 |
-
|
760 |
-
self.transformer = Transformer1d(
|
761 |
-
num_layers=num_transformer_blocks,
|
762 |
-
channels=channels,
|
763 |
-
num_heads=attention_heads,
|
764 |
-
head_features=attention_features,
|
765 |
-
multiplier=attention_multiplier,
|
766 |
-
context_features=context_embedding_features
|
767 |
-
)
|
768 |
-
|
769 |
-
if self.use_extract:
|
770 |
-
num_extract_groups = min(num_groups, extract_channels)
|
771 |
-
self.to_extracted = ResnetBlock1d(
|
772 |
-
in_channels=out_channels,
|
773 |
-
out_channels=extract_channels,
|
774 |
-
num_groups=num_extract_groups,
|
775 |
-
use_snake=use_snake
|
776 |
-
)
|
777 |
-
|
778 |
-
def forward(
|
779 |
-
self,
|
780 |
-
x: Tensor,
|
781 |
-
*,
|
782 |
-
mapping: Optional[Tensor] = None,
|
783 |
-
channels: Optional[Tensor] = None,
|
784 |
-
embedding: Optional[Tensor] = None,
|
785 |
-
embedding_mask: Optional[Tensor] = None,
|
786 |
-
causal: Optional[bool] = False
|
787 |
-
) -> Union[Tuple[Tensor, List[Tensor]], Tensor]:
|
788 |
-
|
789 |
-
if self.use_pre_downsample:
|
790 |
-
x = self.downsample(x)
|
791 |
-
|
792 |
-
if self.use_context and exists(channels):
|
793 |
-
x = torch.cat([x, channels], dim=1)
|
794 |
-
|
795 |
-
skips = []
|
796 |
-
for block in self.blocks:
|
797 |
-
x = block(x, mapping=mapping, causal=causal)
|
798 |
-
skips += [x] if self.use_skip else []
|
799 |
-
|
800 |
-
if self.use_transformer:
|
801 |
-
x = self.transformer(x, context=embedding, context_mask=embedding_mask, causal=causal)
|
802 |
-
skips += [x] if self.use_skip else []
|
803 |
-
|
804 |
-
if not self.use_pre_downsample:
|
805 |
-
x = self.downsample(x)
|
806 |
-
|
807 |
-
if self.use_extract:
|
808 |
-
extracted = self.to_extracted(x)
|
809 |
-
return x, extracted
|
810 |
-
|
811 |
-
return (x, skips) if self.use_skip else x
|
812 |
-
|
813 |
-
|
814 |
-
class UpsampleBlock1d(nn.Module):
|
815 |
-
def __init__(
|
816 |
-
self,
|
817 |
-
in_channels: int,
|
818 |
-
out_channels: int,
|
819 |
-
*,
|
820 |
-
factor: int,
|
821 |
-
num_layers: int,
|
822 |
-
num_groups: int,
|
823 |
-
use_nearest: bool = False,
|
824 |
-
use_pre_upsample: bool = False,
|
825 |
-
use_skip: bool = False,
|
826 |
-
use_snake: bool = False,
|
827 |
-
skip_channels: int = 0,
|
828 |
-
use_skip_scale: bool = False,
|
829 |
-
extract_channels: int = 0,
|
830 |
-
num_transformer_blocks: int = 0,
|
831 |
-
attention_heads: Optional[int] = None,
|
832 |
-
attention_features: Optional[int] = None,
|
833 |
-
attention_multiplier: Optional[int] = None,
|
834 |
-
context_mapping_features: Optional[int] = None,
|
835 |
-
context_embedding_features: Optional[int] = None,
|
836 |
-
):
|
837 |
-
super().__init__()
|
838 |
-
|
839 |
-
self.use_extract = extract_channels > 0
|
840 |
-
self.use_pre_upsample = use_pre_upsample
|
841 |
-
self.use_transformer = num_transformer_blocks > 0
|
842 |
-
self.use_skip = use_skip
|
843 |
-
self.skip_scale = 2 ** -0.5 if use_skip_scale else 1.0
|
844 |
-
|
845 |
-
channels = out_channels if use_pre_upsample else in_channels
|
846 |
-
|
847 |
-
self.blocks = nn.ModuleList(
|
848 |
-
[
|
849 |
-
ResnetBlock1d(
|
850 |
-
in_channels=channels + skip_channels,
|
851 |
-
out_channels=channels,
|
852 |
-
num_groups=num_groups,
|
853 |
-
context_mapping_features=context_mapping_features,
|
854 |
-
use_snake=use_snake
|
855 |
-
)
|
856 |
-
for _ in range(num_layers)
|
857 |
-
]
|
858 |
-
)
|
859 |
-
|
860 |
-
if self.use_transformer:
|
861 |
-
assert (
|
862 |
-
(exists(attention_heads) or exists(attention_features))
|
863 |
-
and exists(attention_multiplier)
|
864 |
-
)
|
865 |
-
|
866 |
-
if attention_features is None and attention_heads is not None:
|
867 |
-
attention_features = channels // attention_heads
|
868 |
-
|
869 |
-
if attention_heads is None and attention_features is not None:
|
870 |
-
attention_heads = channels // attention_features
|
871 |
-
|
872 |
-
self.transformer = Transformer1d(
|
873 |
-
num_layers=num_transformer_blocks,
|
874 |
-
channels=channels,
|
875 |
-
num_heads=attention_heads,
|
876 |
-
head_features=attention_features,
|
877 |
-
multiplier=attention_multiplier,
|
878 |
-
context_features=context_embedding_features,
|
879 |
-
)
|
880 |
-
|
881 |
-
self.upsample = Upsample1d(
|
882 |
-
in_channels=in_channels,
|
883 |
-
out_channels=out_channels,
|
884 |
-
factor=factor,
|
885 |
-
use_nearest=use_nearest,
|
886 |
-
)
|
887 |
-
|
888 |
-
if self.use_extract:
|
889 |
-
num_extract_groups = min(num_groups, extract_channels)
|
890 |
-
self.to_extracted = ResnetBlock1d(
|
891 |
-
in_channels=out_channels,
|
892 |
-
out_channels=extract_channels,
|
893 |
-
num_groups=num_extract_groups,
|
894 |
-
use_snake=use_snake
|
895 |
-
)
|
896 |
-
|
897 |
-
def add_skip(self, x: Tensor, skip: Tensor) -> Tensor:
|
898 |
-
return torch.cat([x, skip * self.skip_scale], dim=1)
|
899 |
-
|
900 |
-
def forward(
|
901 |
-
self,
|
902 |
-
x: Tensor,
|
903 |
-
*,
|
904 |
-
skips: Optional[List[Tensor]] = None,
|
905 |
-
mapping: Optional[Tensor] = None,
|
906 |
-
embedding: Optional[Tensor] = None,
|
907 |
-
embedding_mask: Optional[Tensor] = None,
|
908 |
-
causal: Optional[bool] = False
|
909 |
-
) -> Union[Tuple[Tensor, Tensor], Tensor]:
|
910 |
-
|
911 |
-
if self.use_pre_upsample:
|
912 |
-
x = self.upsample(x)
|
913 |
-
|
914 |
-
for block in self.blocks:
|
915 |
-
x = self.add_skip(x, skip=skips.pop()) if exists(skips) else x
|
916 |
-
x = block(x, mapping=mapping, causal=causal)
|
917 |
-
|
918 |
-
if self.use_transformer:
|
919 |
-
x = self.transformer(x, context=embedding, context_mask=embedding_mask, causal=causal)
|
920 |
-
|
921 |
-
if not self.use_pre_upsample:
|
922 |
-
x = self.upsample(x)
|
923 |
-
|
924 |
-
if self.use_extract:
|
925 |
-
extracted = self.to_extracted(x)
|
926 |
-
return x, extracted
|
927 |
-
|
928 |
-
return x
|
929 |
-
|
930 |
-
|
931 |
-
class BottleneckBlock1d(nn.Module):
|
932 |
-
def __init__(
|
933 |
-
self,
|
934 |
-
channels: int,
|
935 |
-
*,
|
936 |
-
num_groups: int,
|
937 |
-
num_transformer_blocks: int = 0,
|
938 |
-
attention_heads: Optional[int] = None,
|
939 |
-
attention_features: Optional[int] = None,
|
940 |
-
attention_multiplier: Optional[int] = None,
|
941 |
-
context_mapping_features: Optional[int] = None,
|
942 |
-
context_embedding_features: Optional[int] = None,
|
943 |
-
use_snake: bool = False,
|
944 |
-
):
|
945 |
-
super().__init__()
|
946 |
-
self.use_transformer = num_transformer_blocks > 0
|
947 |
-
|
948 |
-
self.pre_block = ResnetBlock1d(
|
949 |
-
in_channels=channels,
|
950 |
-
out_channels=channels,
|
951 |
-
num_groups=num_groups,
|
952 |
-
context_mapping_features=context_mapping_features,
|
953 |
-
use_snake=use_snake
|
954 |
-
)
|
955 |
-
|
956 |
-
if self.use_transformer:
|
957 |
-
assert (
|
958 |
-
(exists(attention_heads) or exists(attention_features))
|
959 |
-
and exists(attention_multiplier)
|
960 |
-
)
|
961 |
-
|
962 |
-
if attention_features is None and attention_heads is not None:
|
963 |
-
attention_features = channels // attention_heads
|
964 |
-
|
965 |
-
if attention_heads is None and attention_features is not None:
|
966 |
-
attention_heads = channels // attention_features
|
967 |
-
|
968 |
-
self.transformer = Transformer1d(
|
969 |
-
num_layers=num_transformer_blocks,
|
970 |
-
channels=channels,
|
971 |
-
num_heads=attention_heads,
|
972 |
-
head_features=attention_features,
|
973 |
-
multiplier=attention_multiplier,
|
974 |
-
context_features=context_embedding_features,
|
975 |
-
)
|
976 |
-
|
977 |
-
self.post_block = ResnetBlock1d(
|
978 |
-
in_channels=channels,
|
979 |
-
out_channels=channels,
|
980 |
-
num_groups=num_groups,
|
981 |
-
context_mapping_features=context_mapping_features,
|
982 |
-
use_snake=use_snake
|
983 |
-
)
|
984 |
-
|
985 |
-
def forward(
|
986 |
-
self,
|
987 |
-
x: Tensor,
|
988 |
-
*,
|
989 |
-
mapping: Optional[Tensor] = None,
|
990 |
-
embedding: Optional[Tensor] = None,
|
991 |
-
embedding_mask: Optional[Tensor] = None,
|
992 |
-
causal: Optional[bool] = False
|
993 |
-
) -> Tensor:
|
994 |
-
x = self.pre_block(x, mapping=mapping, causal=causal)
|
995 |
-
if self.use_transformer:
|
996 |
-
x = self.transformer(x, context=embedding, context_mask=embedding_mask, causal=causal)
|
997 |
-
x = self.post_block(x, mapping=mapping, causal=causal)
|
998 |
-
return x
|
999 |
-
|
1000 |
-
|
1001 |
-
"""
|
1002 |
-
UNet
|
1003 |
-
"""
|
1004 |
-
|
1005 |
-
|
1006 |
-
class UNet1d(nn.Module):
|
1007 |
-
def __init__(
|
1008 |
-
self,
|
1009 |
-
in_channels: int,
|
1010 |
-
channels: int,
|
1011 |
-
multipliers: Sequence[int],
|
1012 |
-
factors: Sequence[int],
|
1013 |
-
num_blocks: Sequence[int],
|
1014 |
-
attentions: Sequence[int],
|
1015 |
-
patch_size: int = 1,
|
1016 |
-
resnet_groups: int = 8,
|
1017 |
-
use_context_time: bool = True,
|
1018 |
-
kernel_multiplier_downsample: int = 2,
|
1019 |
-
use_nearest_upsample: bool = False,
|
1020 |
-
use_skip_scale: bool = True,
|
1021 |
-
use_snake: bool = False,
|
1022 |
-
use_stft: bool = False,
|
1023 |
-
use_stft_context: bool = False,
|
1024 |
-
out_channels: Optional[int] = None,
|
1025 |
-
context_features: Optional[int] = None,
|
1026 |
-
context_features_multiplier: int = 4,
|
1027 |
-
context_channels: Optional[Sequence[int]] = None,
|
1028 |
-
context_embedding_features: Optional[int] = None,
|
1029 |
-
**kwargs,
|
1030 |
-
):
|
1031 |
-
super().__init__()
|
1032 |
-
out_channels = default(out_channels, in_channels)
|
1033 |
-
context_channels = list(default(context_channels, []))
|
1034 |
-
num_layers = len(multipliers) - 1
|
1035 |
-
use_context_features = exists(context_features)
|
1036 |
-
use_context_channels = len(context_channels) > 0
|
1037 |
-
context_mapping_features = None
|
1038 |
-
|
1039 |
-
attention_kwargs, kwargs = groupby("attention_", kwargs, keep_prefix=True)
|
1040 |
-
|
1041 |
-
self.num_layers = num_layers
|
1042 |
-
self.use_context_time = use_context_time
|
1043 |
-
self.use_context_features = use_context_features
|
1044 |
-
self.use_context_channels = use_context_channels
|
1045 |
-
self.use_stft = use_stft
|
1046 |
-
self.use_stft_context = use_stft_context
|
1047 |
-
|
1048 |
-
self.context_features = context_features
|
1049 |
-
context_channels_pad_length = num_layers + 1 - len(context_channels)
|
1050 |
-
context_channels = context_channels + [0] * context_channels_pad_length
|
1051 |
-
self.context_channels = context_channels
|
1052 |
-
self.context_embedding_features = context_embedding_features
|
1053 |
-
|
1054 |
-
if use_context_channels:
|
1055 |
-
has_context = [c > 0 for c in context_channels]
|
1056 |
-
self.has_context = has_context
|
1057 |
-
self.channels_ids = [sum(has_context[:i]) for i in range(len(has_context))]
|
1058 |
-
|
1059 |
-
assert (
|
1060 |
-
len(factors) == num_layers
|
1061 |
-
and len(attentions) >= num_layers
|
1062 |
-
and len(num_blocks) == num_layers
|
1063 |
-
)
|
1064 |
-
|
1065 |
-
if use_context_time or use_context_features:
|
1066 |
-
context_mapping_features = channels * context_features_multiplier
|
1067 |
-
|
1068 |
-
self.to_mapping = nn.Sequential(
|
1069 |
-
nn.Linear(context_mapping_features, context_mapping_features),
|
1070 |
-
nn.GELU(),
|
1071 |
-
nn.Linear(context_mapping_features, context_mapping_features),
|
1072 |
-
nn.GELU(),
|
1073 |
-
)
|
1074 |
-
|
1075 |
-
if use_context_time:
|
1076 |
-
assert exists(context_mapping_features)
|
1077 |
-
self.to_time = nn.Sequential(
|
1078 |
-
TimePositionalEmbedding(
|
1079 |
-
dim=channels, out_features=context_mapping_features
|
1080 |
-
),
|
1081 |
-
nn.GELU(),
|
1082 |
-
)
|
1083 |
-
|
1084 |
-
if use_context_features:
|
1085 |
-
assert exists(context_features) and exists(context_mapping_features)
|
1086 |
-
self.to_features = nn.Sequential(
|
1087 |
-
nn.Linear(
|
1088 |
-
in_features=context_features, out_features=context_mapping_features
|
1089 |
-
),
|
1090 |
-
nn.GELU(),
|
1091 |
-
)
|
1092 |
-
|
1093 |
-
if use_stft:
|
1094 |
-
stft_kwargs, kwargs = groupby("stft_", kwargs)
|
1095 |
-
assert "num_fft" in stft_kwargs, "stft_num_fft required if use_stft=True"
|
1096 |
-
stft_channels = (stft_kwargs["num_fft"] // 2 + 1) * 2
|
1097 |
-
in_channels *= stft_channels
|
1098 |
-
out_channels *= stft_channels
|
1099 |
-
context_channels[0] *= stft_channels if use_stft_context else 1
|
1100 |
-
assert exists(in_channels) and exists(out_channels)
|
1101 |
-
self.stft = STFT(**stft_kwargs)
|
1102 |
-
|
1103 |
-
assert not kwargs, f"Unknown arguments: {', '.join(list(kwargs.keys()))}"
|
1104 |
-
|
1105 |
-
self.to_in = Patcher(
|
1106 |
-
in_channels=in_channels + context_channels[0],
|
1107 |
-
out_channels=channels * multipliers[0],
|
1108 |
-
patch_size=patch_size,
|
1109 |
-
context_mapping_features=context_mapping_features,
|
1110 |
-
use_snake=use_snake
|
1111 |
-
)
|
1112 |
-
|
1113 |
-
self.downsamples = nn.ModuleList(
|
1114 |
-
[
|
1115 |
-
DownsampleBlock1d(
|
1116 |
-
in_channels=channels * multipliers[i],
|
1117 |
-
out_channels=channels * multipliers[i + 1],
|
1118 |
-
context_mapping_features=context_mapping_features,
|
1119 |
-
context_channels=context_channels[i + 1],
|
1120 |
-
context_embedding_features=context_embedding_features,
|
1121 |
-
num_layers=num_blocks[i],
|
1122 |
-
factor=factors[i],
|
1123 |
-
kernel_multiplier=kernel_multiplier_downsample,
|
1124 |
-
num_groups=resnet_groups,
|
1125 |
-
use_pre_downsample=True,
|
1126 |
-
use_skip=True,
|
1127 |
-
use_snake=use_snake,
|
1128 |
-
num_transformer_blocks=attentions[i],
|
1129 |
-
**attention_kwargs,
|
1130 |
-
)
|
1131 |
-
for i in range(num_layers)
|
1132 |
-
]
|
1133 |
-
)
|
1134 |
-
|
1135 |
-
self.bottleneck = BottleneckBlock1d(
|
1136 |
-
channels=channels * multipliers[-1],
|
1137 |
-
context_mapping_features=context_mapping_features,
|
1138 |
-
context_embedding_features=context_embedding_features,
|
1139 |
-
num_groups=resnet_groups,
|
1140 |
-
num_transformer_blocks=attentions[-1],
|
1141 |
-
use_snake=use_snake,
|
1142 |
-
**attention_kwargs,
|
1143 |
-
)
|
1144 |
-
|
1145 |
-
self.upsamples = nn.ModuleList(
|
1146 |
-
[
|
1147 |
-
UpsampleBlock1d(
|
1148 |
-
in_channels=channels * multipliers[i + 1],
|
1149 |
-
out_channels=channels * multipliers[i],
|
1150 |
-
context_mapping_features=context_mapping_features,
|
1151 |
-
context_embedding_features=context_embedding_features,
|
1152 |
-
num_layers=num_blocks[i] + (1 if attentions[i] else 0),
|
1153 |
-
factor=factors[i],
|
1154 |
-
use_nearest=use_nearest_upsample,
|
1155 |
-
num_groups=resnet_groups,
|
1156 |
-
use_skip_scale=use_skip_scale,
|
1157 |
-
use_pre_upsample=False,
|
1158 |
-
use_skip=True,
|
1159 |
-
use_snake=use_snake,
|
1160 |
-
skip_channels=channels * multipliers[i + 1],
|
1161 |
-
num_transformer_blocks=attentions[i],
|
1162 |
-
**attention_kwargs,
|
1163 |
-
)
|
1164 |
-
for i in reversed(range(num_layers))
|
1165 |
-
]
|
1166 |
-
)
|
1167 |
-
|
1168 |
-
self.to_out = Unpatcher(
|
1169 |
-
in_channels=channels * multipliers[0],
|
1170 |
-
out_channels=out_channels,
|
1171 |
-
patch_size=patch_size,
|
1172 |
-
context_mapping_features=context_mapping_features,
|
1173 |
-
use_snake=use_snake
|
1174 |
-
)
|
1175 |
-
|
1176 |
-
def get_channels(
|
1177 |
-
self, channels_list: Optional[Sequence[Tensor]] = None, layer: int = 0
|
1178 |
-
) -> Optional[Tensor]:
|
1179 |
-
"""Gets context channels at `layer` and checks that shape is correct"""
|
1180 |
-
use_context_channels = self.use_context_channels and self.has_context[layer]
|
1181 |
-
if not use_context_channels:
|
1182 |
-
return None
|
1183 |
-
assert exists(channels_list), "Missing context"
|
1184 |
-
# Get channels index (skipping zero channel contexts)
|
1185 |
-
channels_id = self.channels_ids[layer]
|
1186 |
-
# Get channels
|
1187 |
-
channels = channels_list[channels_id]
|
1188 |
-
message = f"Missing context for layer {layer} at index {channels_id}"
|
1189 |
-
assert exists(channels), message
|
1190 |
-
# Check channels
|
1191 |
-
num_channels = self.context_channels[layer]
|
1192 |
-
message = f"Expected context with {num_channels} channels at idx {channels_id}"
|
1193 |
-
assert channels.shape[1] == num_channels, message
|
1194 |
-
# STFT channels if requested
|
1195 |
-
channels = self.stft.encode1d(channels) if self.use_stft_context else channels # type: ignore # noqa
|
1196 |
-
return channels
|
1197 |
-
|
1198 |
-
def get_mapping(
|
1199 |
-
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
1200 |
-
) -> Optional[Tensor]:
|
1201 |
-
"""Combines context time features and features into mapping"""
|
1202 |
-
items, mapping = [], None
|
1203 |
-
# Compute time features
|
1204 |
-
if self.use_context_time:
|
1205 |
-
assert_message = "use_context_time=True but no time features provided"
|
1206 |
-
assert exists(time), assert_message
|
1207 |
-
items += [self.to_time(time)]
|
1208 |
-
# Compute features
|
1209 |
-
if self.use_context_features:
|
1210 |
-
assert_message = "context_features exists but no features provided"
|
1211 |
-
assert exists(features), assert_message
|
1212 |
-
items += [self.to_features(features)]
|
1213 |
-
# Compute joint mapping
|
1214 |
-
if self.use_context_time or self.use_context_features:
|
1215 |
-
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
1216 |
-
mapping = self.to_mapping(mapping)
|
1217 |
-
return mapping
|
1218 |
-
|
1219 |
-
def forward(
|
1220 |
-
self,
|
1221 |
-
x: Tensor,
|
1222 |
-
time: Optional[Tensor] = None,
|
1223 |
-
*,
|
1224 |
-
features: Optional[Tensor] = None,
|
1225 |
-
channels_list: Optional[Sequence[Tensor]] = None,
|
1226 |
-
embedding: Optional[Tensor] = None,
|
1227 |
-
embedding_mask: Optional[Tensor] = None,
|
1228 |
-
causal: Optional[bool] = False,
|
1229 |
-
) -> Tensor:
|
1230 |
-
channels = self.get_channels(channels_list, layer=0)
|
1231 |
-
# Apply stft if required
|
1232 |
-
x = self.stft.encode1d(x) if self.use_stft else x # type: ignore
|
1233 |
-
# Concat context channels at layer 0 if provided
|
1234 |
-
x = torch.cat([x, channels], dim=1) if exists(channels) else x
|
1235 |
-
# Compute mapping from time and features
|
1236 |
-
mapping = self.get_mapping(time, features)
|
1237 |
-
x = self.to_in(x, mapping, causal=causal)
|
1238 |
-
skips_list = [x]
|
1239 |
-
|
1240 |
-
for i, downsample in enumerate(self.downsamples):
|
1241 |
-
channels = self.get_channels(channels_list, layer=i + 1)
|
1242 |
-
x, skips = downsample(
|
1243 |
-
x, mapping=mapping, channels=channels, embedding=embedding, embedding_mask=embedding_mask, causal=causal
|
1244 |
-
)
|
1245 |
-
skips_list += [skips]
|
1246 |
-
|
1247 |
-
x = self.bottleneck(x, mapping=mapping, embedding=embedding, embedding_mask=embedding_mask, causal=causal)
|
1248 |
-
|
1249 |
-
for i, upsample in enumerate(self.upsamples):
|
1250 |
-
skips = skips_list.pop()
|
1251 |
-
x = upsample(x, skips=skips, mapping=mapping, embedding=embedding, embedding_mask=embedding_mask, causal=causal)
|
1252 |
-
|
1253 |
-
x += skips_list.pop()
|
1254 |
-
x = self.to_out(x, mapping, causal=causal)
|
1255 |
-
x = self.stft.decode1d(x) if self.use_stft else x
|
1256 |
-
|
1257 |
-
return x
|
1258 |
-
|
1259 |
-
|
1260 |
-
""" Conditioning Modules """
|
1261 |
-
|
1262 |
-
|
1263 |
-
class FixedEmbedding(nn.Module):
|
1264 |
-
def __init__(self, max_length: int, features: int):
|
1265 |
-
super().__init__()
|
1266 |
-
self.max_length = max_length
|
1267 |
-
self.embedding = nn.Embedding(max_length, features)
|
1268 |
-
|
1269 |
-
def forward(self, x: Tensor) -> Tensor:
|
1270 |
-
batch_size, length, device = *x.shape[0:2], x.device
|
1271 |
-
assert_message = "Input sequence length must be <= max_length"
|
1272 |
-
assert length <= self.max_length, assert_message
|
1273 |
-
position = torch.arange(length, device=device)
|
1274 |
-
fixed_embedding = self.embedding(position)
|
1275 |
-
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
|
1276 |
-
return fixed_embedding
|
1277 |
-
|
1278 |
-
|
1279 |
-
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
1280 |
-
if proba == 1:
|
1281 |
-
return torch.ones(shape, device=device, dtype=torch.bool)
|
1282 |
-
elif proba == 0:
|
1283 |
-
return torch.zeros(shape, device=device, dtype=torch.bool)
|
1284 |
-
else:
|
1285 |
-
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
1286 |
-
|
1287 |
-
|
1288 |
-
class UNetCFG1d(UNet1d):
|
1289 |
-
|
1290 |
-
"""UNet1d with Classifier-Free Guidance"""
|
1291 |
-
|
1292 |
-
def __init__(
|
1293 |
-
self,
|
1294 |
-
context_embedding_max_length: int,
|
1295 |
-
context_embedding_features: int,
|
1296 |
-
use_xattn_time: bool = False,
|
1297 |
-
**kwargs,
|
1298 |
-
):
|
1299 |
-
super().__init__(
|
1300 |
-
context_embedding_features=context_embedding_features, **kwargs
|
1301 |
-
)
|
1302 |
-
|
1303 |
-
self.use_xattn_time = use_xattn_time
|
1304 |
-
|
1305 |
-
if use_xattn_time:
|
1306 |
-
assert exists(context_embedding_features)
|
1307 |
-
self.to_time_embedding = nn.Sequential(
|
1308 |
-
TimePositionalEmbedding(
|
1309 |
-
dim=kwargs["channels"], out_features=context_embedding_features
|
1310 |
-
),
|
1311 |
-
nn.GELU(),
|
1312 |
-
)
|
1313 |
-
|
1314 |
-
context_embedding_max_length += 1 # Add one for time embedding
|
1315 |
-
|
1316 |
-
self.fixed_embedding = FixedEmbedding(
|
1317 |
-
max_length=context_embedding_max_length, features=context_embedding_features
|
1318 |
-
)
|
1319 |
-
|
1320 |
-
def forward( # type: ignore
|
1321 |
-
self,
|
1322 |
-
x: Tensor,
|
1323 |
-
time: Tensor,
|
1324 |
-
*,
|
1325 |
-
embedding: Tensor,
|
1326 |
-
embedding_mask: Optional[Tensor] = None,
|
1327 |
-
embedding_scale: float = 1.0,
|
1328 |
-
embedding_mask_proba: float = 0.0,
|
1329 |
-
batch_cfg: bool = False,
|
1330 |
-
rescale_cfg: bool = False,
|
1331 |
-
scale_phi: float = 0.4,
|
1332 |
-
negative_embedding: Optional[Tensor] = None,
|
1333 |
-
negative_embedding_mask: Optional[Tensor] = None,
|
1334 |
-
**kwargs,
|
1335 |
-
) -> Tensor:
|
1336 |
-
b, device = embedding.shape[0], embedding.device
|
1337 |
-
|
1338 |
-
if self.use_xattn_time:
|
1339 |
-
embedding = torch.cat([embedding, self.to_time_embedding(time).unsqueeze(1)], dim=1)
|
1340 |
-
|
1341 |
-
if embedding_mask is not None:
|
1342 |
-
embedding_mask = torch.cat([embedding_mask, torch.ones((b, 1), device=device)], dim=1)
|
1343 |
-
|
1344 |
-
fixed_embedding = self.fixed_embedding(embedding)
|
1345 |
-
|
1346 |
-
if embedding_mask_proba > 0.0:
|
1347 |
-
# Randomly mask embedding
|
1348 |
-
batch_mask = rand_bool(
|
1349 |
-
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
1350 |
-
)
|
1351 |
-
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
1352 |
-
|
1353 |
-
if embedding_scale != 1.0:
|
1354 |
-
if batch_cfg:
|
1355 |
-
batch_x = torch.cat([x, x], dim=0)
|
1356 |
-
batch_time = torch.cat([time, time], dim=0)
|
1357 |
-
|
1358 |
-
if negative_embedding is not None:
|
1359 |
-
if negative_embedding_mask is not None:
|
1360 |
-
negative_embedding_mask = negative_embedding_mask.to(torch.bool).unsqueeze(2)
|
1361 |
-
|
1362 |
-
negative_embedding = torch.where(negative_embedding_mask, negative_embedding, fixed_embedding)
|
1363 |
-
|
1364 |
-
batch_embed = torch.cat([embedding, negative_embedding], dim=0)
|
1365 |
-
|
1366 |
-
else:
|
1367 |
-
batch_embed = torch.cat([embedding, fixed_embedding], dim=0)
|
1368 |
-
|
1369 |
-
batch_mask = None
|
1370 |
-
if embedding_mask is not None:
|
1371 |
-
batch_mask = torch.cat([embedding_mask, embedding_mask], dim=0)
|
1372 |
-
|
1373 |
-
batch_features = None
|
1374 |
-
features = kwargs.pop("features", None)
|
1375 |
-
if self.use_context_features:
|
1376 |
-
batch_features = torch.cat([features, features], dim=0)
|
1377 |
-
|
1378 |
-
batch_channels = None
|
1379 |
-
channels_list = kwargs.pop("channels_list", None)
|
1380 |
-
if self.use_context_channels:
|
1381 |
-
batch_channels = []
|
1382 |
-
for channels in channels_list:
|
1383 |
-
batch_channels += [torch.cat([channels, channels], dim=0)]
|
1384 |
-
|
1385 |
-
# Compute both normal and fixed embedding outputs
|
1386 |
-
batch_out = super().forward(batch_x, batch_time, embedding=batch_embed, embedding_mask=batch_mask, features=batch_features, channels_list=batch_channels, **kwargs)
|
1387 |
-
out, out_masked = batch_out.chunk(2, dim=0)
|
1388 |
-
|
1389 |
-
else:
|
1390 |
-
# Compute both normal and fixed embedding outputs
|
1391 |
-
out = super().forward(x, time, embedding=embedding, embedding_mask=embedding_mask, **kwargs)
|
1392 |
-
out_masked = super().forward(x, time, embedding=fixed_embedding, embedding_mask=embedding_mask, **kwargs)
|
1393 |
-
|
1394 |
-
out_cfg = out_masked + (out - out_masked) * embedding_scale
|
1395 |
-
|
1396 |
-
if rescale_cfg:
|
1397 |
-
|
1398 |
-
out_std = out.std(dim=1, keepdim=True)
|
1399 |
-
out_cfg_std = out_cfg.std(dim=1, keepdim=True)
|
1400 |
-
|
1401 |
-
return scale_phi * (out_cfg * (out_std/out_cfg_std)) + (1-scale_phi) * out_cfg
|
1402 |
-
|
1403 |
-
else:
|
1404 |
-
|
1405 |
-
return out_cfg
|
1406 |
-
|
1407 |
-
else:
|
1408 |
-
return super().forward(x, time, embedding=embedding, embedding_mask=embedding_mask, **kwargs)
|
1409 |
-
|
1410 |
-
|
1411 |
-
class UNetNCCA1d(UNet1d):
|
1412 |
-
|
1413 |
-
"""UNet1d with Noise Channel Conditioning Augmentation"""
|
1414 |
-
|
1415 |
-
def __init__(self, context_features: int, **kwargs):
|
1416 |
-
super().__init__(context_features=context_features, **kwargs)
|
1417 |
-
self.embedder = NumberEmbedder(features=context_features)
|
1418 |
-
|
1419 |
-
def expand(self, x: Any, shape: Tuple[int, ...]) -> Tensor:
|
1420 |
-
x = x if torch.is_tensor(x) else torch.tensor(x)
|
1421 |
-
return x.expand(shape)
|
1422 |
-
|
1423 |
-
def forward( # type: ignore
|
1424 |
-
self,
|
1425 |
-
x: Tensor,
|
1426 |
-
time: Tensor,
|
1427 |
-
*,
|
1428 |
-
channels_list: Sequence[Tensor],
|
1429 |
-
channels_augmentation: Union[
|
1430 |
-
bool, Sequence[bool], Sequence[Sequence[bool]], Tensor
|
1431 |
-
] = False,
|
1432 |
-
channels_scale: Union[
|
1433 |
-
float, Sequence[float], Sequence[Sequence[float]], Tensor
|
1434 |
-
] = 0,
|
1435 |
-
**kwargs,
|
1436 |
-
) -> Tensor:
|
1437 |
-
b, n = x.shape[0], len(channels_list)
|
1438 |
-
channels_augmentation = self.expand(channels_augmentation, shape=(b, n)).to(x)
|
1439 |
-
channels_scale = self.expand(channels_scale, shape=(b, n)).to(x)
|
1440 |
-
|
1441 |
-
# Augmentation (for each channel list item)
|
1442 |
-
for i in range(n):
|
1443 |
-
scale = channels_scale[:, i] * channels_augmentation[:, i]
|
1444 |
-
scale = rearrange(scale, "b -> b 1 1")
|
1445 |
-
item = channels_list[i]
|
1446 |
-
channels_list[i] = torch.randn_like(item) * scale + item * (1 - scale) # type: ignore # noqa
|
1447 |
-
|
1448 |
-
# Scale embedding (sum reduction if more than one channel list item)
|
1449 |
-
channels_scale_emb = self.embedder(channels_scale)
|
1450 |
-
channels_scale_emb = reduce(channels_scale_emb, "b n d -> b d", "sum")
|
1451 |
-
|
1452 |
-
return super().forward(
|
1453 |
-
x=x,
|
1454 |
-
time=time,
|
1455 |
-
channels_list=channels_list,
|
1456 |
-
features=channels_scale_emb,
|
1457 |
-
**kwargs,
|
1458 |
-
)
|
1459 |
-
|
1460 |
-
|
1461 |
-
class UNetAll1d(UNetCFG1d, UNetNCCA1d):
|
1462 |
-
def __init__(self, *args, **kwargs):
|
1463 |
-
super().__init__(*args, **kwargs)
|
1464 |
-
|
1465 |
-
def forward(self, *args, **kwargs): # type: ignore
|
1466 |
-
return UNetCFG1d.forward(self, *args, **kwargs)
|
1467 |
-
|
1468 |
-
|
1469 |
-
def XUNet1d(type: str = "base", **kwargs) -> UNet1d:
|
1470 |
-
if type == "base":
|
1471 |
-
return UNet1d(**kwargs)
|
1472 |
-
elif type == "all":
|
1473 |
-
return UNetAll1d(**kwargs)
|
1474 |
-
elif type == "cfg":
|
1475 |
-
return UNetCFG1d(**kwargs)
|
1476 |
-
elif type == "ncca":
|
1477 |
-
return UNetNCCA1d(**kwargs)
|
1478 |
-
else:
|
1479 |
-
raise ValueError(f"Unknown XUNet1d type: {type}")
|
1480 |
-
|
1481 |
-
class NumberEmbedder(nn.Module):
|
1482 |
-
def __init__(
|
1483 |
-
self,
|
1484 |
-
features: int,
|
1485 |
-
dim: int = 256,
|
1486 |
-
):
|
1487 |
-
super().__init__()
|
1488 |
-
self.features = features
|
1489 |
-
self.embedding = TimePositionalEmbedding(dim=dim, out_features=features)
|
1490 |
-
|
1491 |
-
def forward(self, x: Union[List[float], Tensor]) -> Tensor:
|
1492 |
-
if not torch.is_tensor(x):
|
1493 |
-
device = next(self.embedding.parameters()).device
|
1494 |
-
x = torch.tensor(x, device=device)
|
1495 |
-
assert isinstance(x, Tensor)
|
1496 |
-
shape = x.shape
|
1497 |
-
x = rearrange(x, "... -> (...)")
|
1498 |
-
embedding = self.embedding(x)
|
1499 |
-
x = embedding.view(*shape, self.features)
|
1500 |
-
return x # type: ignore
|
1501 |
-
|
1502 |
-
|
1503 |
-
"""
|
1504 |
-
Audio Transforms
|
1505 |
-
"""
|
1506 |
-
|
1507 |
-
|
1508 |
-
class STFT(nn.Module):
|
1509 |
-
"""Helper for torch stft and istft"""
|
1510 |
-
|
1511 |
-
def __init__(
|
1512 |
-
self,
|
1513 |
-
num_fft: int = 1023,
|
1514 |
-
hop_length: int = 256,
|
1515 |
-
window_length: Optional[int] = None,
|
1516 |
-
length: Optional[int] = None,
|
1517 |
-
use_complex: bool = False,
|
1518 |
-
):
|
1519 |
-
super().__init__()
|
1520 |
-
self.num_fft = num_fft
|
1521 |
-
self.hop_length = default(hop_length, floor(num_fft // 4))
|
1522 |
-
self.window_length = default(window_length, num_fft)
|
1523 |
-
self.length = length
|
1524 |
-
self.register_buffer("window", torch.hann_window(self.window_length))
|
1525 |
-
self.use_complex = use_complex
|
1526 |
-
|
1527 |
-
def encode(self, wave: Tensor) -> Tuple[Tensor, Tensor]:
|
1528 |
-
b = wave.shape[0]
|
1529 |
-
wave = rearrange(wave, "b c t -> (b c) t")
|
1530 |
-
|
1531 |
-
stft = torch.stft(
|
1532 |
-
wave,
|
1533 |
-
n_fft=self.num_fft,
|
1534 |
-
hop_length=self.hop_length,
|
1535 |
-
win_length=self.window_length,
|
1536 |
-
window=self.window, # type: ignore
|
1537 |
-
return_complex=True,
|
1538 |
-
normalized=True,
|
1539 |
-
)
|
1540 |
-
|
1541 |
-
if self.use_complex:
|
1542 |
-
# Returns real and imaginary
|
1543 |
-
stft_a, stft_b = stft.real, stft.imag
|
1544 |
-
else:
|
1545 |
-
# Returns magnitude and phase matrices
|
1546 |
-
magnitude, phase = torch.abs(stft), torch.angle(stft)
|
1547 |
-
stft_a, stft_b = magnitude, phase
|
1548 |
-
|
1549 |
-
return rearrange_many((stft_a, stft_b), "(b c) f l -> b c f l", b=b)
|
1550 |
-
|
1551 |
-
def decode(self, stft_a: Tensor, stft_b: Tensor) -> Tensor:
|
1552 |
-
b, l = stft_a.shape[0], stft_a.shape[-1] # noqa
|
1553 |
-
length = closest_power_2(l * self.hop_length)
|
1554 |
-
|
1555 |
-
stft_a, stft_b = rearrange_many((stft_a, stft_b), "b c f l -> (b c) f l")
|
1556 |
-
|
1557 |
-
if self.use_complex:
|
1558 |
-
real, imag = stft_a, stft_b
|
1559 |
-
else:
|
1560 |
-
magnitude, phase = stft_a, stft_b
|
1561 |
-
real, imag = magnitude * torch.cos(phase), magnitude * torch.sin(phase)
|
1562 |
-
|
1563 |
-
stft = torch.stack([real, imag], dim=-1)
|
1564 |
-
|
1565 |
-
wave = torch.istft(
|
1566 |
-
stft,
|
1567 |
-
n_fft=self.num_fft,
|
1568 |
-
hop_length=self.hop_length,
|
1569 |
-
win_length=self.window_length,
|
1570 |
-
window=self.window, # type: ignore
|
1571 |
-
length=default(self.length, length),
|
1572 |
-
normalized=True,
|
1573 |
-
)
|
1574 |
-
|
1575 |
-
return rearrange(wave, "(b c) t -> b c t", b=b)
|
1576 |
-
|
1577 |
-
def encode1d(
|
1578 |
-
self, wave: Tensor, stacked: bool = True
|
1579 |
-
) -> Union[Tensor, Tuple[Tensor, Tensor]]:
|
1580 |
-
stft_a, stft_b = self.encode(wave)
|
1581 |
-
stft_a, stft_b = rearrange_many((stft_a, stft_b), "b c f l -> b (c f) l")
|
1582 |
-
return torch.cat((stft_a, stft_b), dim=1) if stacked else (stft_a, stft_b)
|
1583 |
-
|
1584 |
-
def decode1d(self, stft_pair: Tensor) -> Tensor:
|
1585 |
-
f = self.num_fft // 2 + 1
|
1586 |
-
stft_a, stft_b = stft_pair.chunk(chunks=2, dim=1)
|
1587 |
-
stft_a, stft_b = rearrange_many((stft_a, stft_b), "b (c f) l -> b c f l", f=f)
|
1588 |
-
return self.decode(stft_a, stft_b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/autoencoders.py
DELETED
@@ -1,794 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
from torch import nn
|
6 |
-
from torch.nn import functional as F
|
7 |
-
from torchaudio import transforms as T
|
8 |
-
from alias_free_torch import Activation1d
|
9 |
-
from dac.nn.layers import WNConv1d, WNConvTranspose1d
|
10 |
-
from typing import Literal, Dict, Any
|
11 |
-
|
12 |
-
from ..inference.sampling import sample
|
13 |
-
from ..inference.utils import prepare_audio
|
14 |
-
from .blocks import SnakeBeta
|
15 |
-
from .bottleneck import Bottleneck, DiscreteBottleneck
|
16 |
-
from .diffusion import ConditionedDiffusionModel, DAU1DCondWrapper, UNet1DCondWrapper, DiTWrapper
|
17 |
-
from .factory import create_pretransform_from_config, create_bottleneck_from_config
|
18 |
-
from .pretransforms import Pretransform
|
19 |
-
|
20 |
-
def checkpoint(function, *args, **kwargs):
|
21 |
-
kwargs.setdefault("use_reentrant", False)
|
22 |
-
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
23 |
-
|
24 |
-
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
|
25 |
-
if activation == "elu":
|
26 |
-
act = nn.ELU()
|
27 |
-
elif activation == "snake":
|
28 |
-
act = SnakeBeta(channels)
|
29 |
-
elif activation == "none":
|
30 |
-
act = nn.Identity()
|
31 |
-
else:
|
32 |
-
raise ValueError(f"Unknown activation {activation}")
|
33 |
-
|
34 |
-
if antialias:
|
35 |
-
act = Activation1d(act)
|
36 |
-
|
37 |
-
return act
|
38 |
-
|
39 |
-
class ResidualUnit(nn.Module):
|
40 |
-
def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
|
41 |
-
super().__init__()
|
42 |
-
|
43 |
-
self.dilation = dilation
|
44 |
-
|
45 |
-
padding = (dilation * (7-1)) // 2
|
46 |
-
|
47 |
-
self.layers = nn.Sequential(
|
48 |
-
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
49 |
-
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
50 |
-
kernel_size=7, dilation=dilation, padding=padding),
|
51 |
-
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
52 |
-
WNConv1d(in_channels=out_channels, out_channels=out_channels,
|
53 |
-
kernel_size=1)
|
54 |
-
)
|
55 |
-
|
56 |
-
def forward(self, x):
|
57 |
-
res = x
|
58 |
-
|
59 |
-
#x = checkpoint(self.layers, x)
|
60 |
-
x = self.layers(x)
|
61 |
-
|
62 |
-
return x + res
|
63 |
-
|
64 |
-
class EncoderBlock(nn.Module):
|
65 |
-
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
|
66 |
-
super().__init__()
|
67 |
-
|
68 |
-
self.layers = nn.Sequential(
|
69 |
-
ResidualUnit(in_channels=in_channels,
|
70 |
-
out_channels=in_channels, dilation=1, use_snake=use_snake),
|
71 |
-
ResidualUnit(in_channels=in_channels,
|
72 |
-
out_channels=in_channels, dilation=3, use_snake=use_snake),
|
73 |
-
ResidualUnit(in_channels=in_channels,
|
74 |
-
out_channels=in_channels, dilation=9, use_snake=use_snake),
|
75 |
-
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
76 |
-
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
77 |
-
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
|
78 |
-
)
|
79 |
-
|
80 |
-
def forward(self, x):
|
81 |
-
return self.layers(x)
|
82 |
-
|
83 |
-
class DecoderBlock(nn.Module):
|
84 |
-
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
|
85 |
-
super().__init__()
|
86 |
-
|
87 |
-
if use_nearest_upsample:
|
88 |
-
upsample_layer = nn.Sequential(
|
89 |
-
nn.Upsample(scale_factor=stride, mode="nearest"),
|
90 |
-
WNConv1d(in_channels=in_channels,
|
91 |
-
out_channels=out_channels,
|
92 |
-
kernel_size=2*stride,
|
93 |
-
stride=1,
|
94 |
-
bias=False,
|
95 |
-
padding='same')
|
96 |
-
)
|
97 |
-
else:
|
98 |
-
upsample_layer = WNConvTranspose1d(in_channels=in_channels,
|
99 |
-
out_channels=out_channels,
|
100 |
-
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))
|
101 |
-
|
102 |
-
self.layers = nn.Sequential(
|
103 |
-
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
104 |
-
upsample_layer,
|
105 |
-
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
106 |
-
dilation=1, use_snake=use_snake),
|
107 |
-
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
108 |
-
dilation=3, use_snake=use_snake),
|
109 |
-
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
110 |
-
dilation=9, use_snake=use_snake),
|
111 |
-
)
|
112 |
-
|
113 |
-
def forward(self, x):
|
114 |
-
return self.layers(x)
|
115 |
-
|
116 |
-
class OobleckEncoder(nn.Module):
|
117 |
-
def __init__(self,
|
118 |
-
in_channels=2,
|
119 |
-
channels=128,
|
120 |
-
latent_dim=32,
|
121 |
-
c_mults = [1, 2, 4, 8],
|
122 |
-
strides = [2, 4, 8, 8],
|
123 |
-
use_snake=False,
|
124 |
-
antialias_activation=False
|
125 |
-
):
|
126 |
-
super().__init__()
|
127 |
-
|
128 |
-
c_mults = [1] + c_mults
|
129 |
-
|
130 |
-
self.depth = len(c_mults)
|
131 |
-
|
132 |
-
layers = [
|
133 |
-
WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
|
134 |
-
]
|
135 |
-
|
136 |
-
for i in range(self.depth-1):
|
137 |
-
layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]
|
138 |
-
|
139 |
-
layers += [
|
140 |
-
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
|
141 |
-
WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
|
142 |
-
]
|
143 |
-
|
144 |
-
self.layers = nn.Sequential(*layers)
|
145 |
-
|
146 |
-
def forward(self, x):
|
147 |
-
return self.layers(x)
|
148 |
-
|
149 |
-
|
150 |
-
class OobleckDecoder(nn.Module):
|
151 |
-
def __init__(self,
|
152 |
-
out_channels=2,
|
153 |
-
channels=128,
|
154 |
-
latent_dim=32,
|
155 |
-
c_mults = [1, 2, 4, 8],
|
156 |
-
strides = [2, 4, 8, 8],
|
157 |
-
use_snake=False,
|
158 |
-
antialias_activation=False,
|
159 |
-
use_nearest_upsample=False,
|
160 |
-
final_tanh=True):
|
161 |
-
super().__init__()
|
162 |
-
|
163 |
-
c_mults = [1] + c_mults
|
164 |
-
|
165 |
-
self.depth = len(c_mults)
|
166 |
-
|
167 |
-
layers = [
|
168 |
-
WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
|
169 |
-
]
|
170 |
-
|
171 |
-
for i in range(self.depth-1, 0, -1):
|
172 |
-
layers += [DecoderBlock(
|
173 |
-
in_channels=c_mults[i]*channels,
|
174 |
-
out_channels=c_mults[i-1]*channels,
|
175 |
-
stride=strides[i-1],
|
176 |
-
use_snake=use_snake,
|
177 |
-
antialias_activation=antialias_activation,
|
178 |
-
use_nearest_upsample=use_nearest_upsample
|
179 |
-
)
|
180 |
-
]
|
181 |
-
|
182 |
-
layers += [
|
183 |
-
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
|
184 |
-
WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
|
185 |
-
nn.Tanh() if final_tanh else nn.Identity()
|
186 |
-
]
|
187 |
-
|
188 |
-
self.layers = nn.Sequential(*layers)
|
189 |
-
|
190 |
-
def forward(self, x):
|
191 |
-
return self.layers(x)
|
192 |
-
|
193 |
-
|
194 |
-
class DACEncoderWrapper(nn.Module):
|
195 |
-
def __init__(self, in_channels=1, **kwargs):
|
196 |
-
super().__init__()
|
197 |
-
|
198 |
-
from dac.model.dac import Encoder as DACEncoder
|
199 |
-
|
200 |
-
latent_dim = kwargs.pop("latent_dim", None)
|
201 |
-
|
202 |
-
encoder_out_dim = kwargs["d_model"] * (2 ** len(kwargs["strides"]))
|
203 |
-
self.encoder = DACEncoder(d_latent=encoder_out_dim, **kwargs)
|
204 |
-
self.latent_dim = latent_dim
|
205 |
-
|
206 |
-
# Latent-dim support was added to DAC after this was first written, and implemented differently, so this is for backwards compatibility
|
207 |
-
self.proj_out = nn.Conv1d(self.encoder.enc_dim, latent_dim, kernel_size=1) if latent_dim is not None else nn.Identity()
|
208 |
-
|
209 |
-
if in_channels != 1:
|
210 |
-
self.encoder.block[0] = WNConv1d(in_channels, kwargs.get("d_model", 64), kernel_size=7, padding=3)
|
211 |
-
|
212 |
-
def forward(self, x):
|
213 |
-
x = self.encoder(x)
|
214 |
-
x = self.proj_out(x)
|
215 |
-
return x
|
216 |
-
|
217 |
-
class DACDecoderWrapper(nn.Module):
|
218 |
-
def __init__(self, latent_dim, out_channels=1, **kwargs):
|
219 |
-
super().__init__()
|
220 |
-
|
221 |
-
from dac.model.dac import Decoder as DACDecoder
|
222 |
-
|
223 |
-
self.decoder = DACDecoder(**kwargs, input_channel = latent_dim, d_out=out_channels)
|
224 |
-
|
225 |
-
self.latent_dim = latent_dim
|
226 |
-
|
227 |
-
def forward(self, x):
|
228 |
-
return self.decoder(x)
|
229 |
-
|
230 |
-
class AudioAutoencoder(nn.Module):
|
231 |
-
def __init__(
|
232 |
-
self,
|
233 |
-
encoder,
|
234 |
-
decoder,
|
235 |
-
latent_dim,
|
236 |
-
downsampling_ratio,
|
237 |
-
sample_rate,
|
238 |
-
io_channels=2,
|
239 |
-
bottleneck: Bottleneck = None,
|
240 |
-
pretransform: Pretransform = None,
|
241 |
-
in_channels = None,
|
242 |
-
out_channels = None,
|
243 |
-
soft_clip = False
|
244 |
-
):
|
245 |
-
super().__init__()
|
246 |
-
|
247 |
-
self.downsampling_ratio = downsampling_ratio
|
248 |
-
self.sample_rate = sample_rate
|
249 |
-
|
250 |
-
self.latent_dim = latent_dim
|
251 |
-
self.io_channels = io_channels
|
252 |
-
self.in_channels = io_channels
|
253 |
-
self.out_channels = io_channels
|
254 |
-
|
255 |
-
self.min_length = self.downsampling_ratio
|
256 |
-
|
257 |
-
if in_channels is not None:
|
258 |
-
self.in_channels = in_channels
|
259 |
-
|
260 |
-
if out_channels is not None:
|
261 |
-
self.out_channels = out_channels
|
262 |
-
|
263 |
-
self.bottleneck = bottleneck
|
264 |
-
|
265 |
-
self.encoder = encoder
|
266 |
-
|
267 |
-
self.decoder = decoder
|
268 |
-
|
269 |
-
self.pretransform = pretransform
|
270 |
-
|
271 |
-
self.soft_clip = soft_clip
|
272 |
-
|
273 |
-
self.is_discrete = self.bottleneck is not None and self.bottleneck.is_discrete
|
274 |
-
|
275 |
-
def encode(self, audio, return_info=False, skip_pretransform=False, iterate_batch=False, **kwargs):
|
276 |
-
|
277 |
-
info = {}
|
278 |
-
|
279 |
-
if self.pretransform is not None and not skip_pretransform:
|
280 |
-
if self.pretransform.enable_grad:
|
281 |
-
if iterate_batch:
|
282 |
-
audios = []
|
283 |
-
for i in range(audio.shape[0]):
|
284 |
-
audios.append(self.pretransform.encode(audio[i:i+1]))
|
285 |
-
audio = torch.cat(audios, dim=0)
|
286 |
-
else:
|
287 |
-
audio = self.pretransform.encode(audio)
|
288 |
-
else:
|
289 |
-
with torch.no_grad():
|
290 |
-
if iterate_batch:
|
291 |
-
audios = []
|
292 |
-
for i in range(audio.shape[0]):
|
293 |
-
audios.append(self.pretransform.encode(audio[i:i+1]))
|
294 |
-
audio = torch.cat(audios, dim=0)
|
295 |
-
else:
|
296 |
-
audio = self.pretransform.encode(audio)
|
297 |
-
|
298 |
-
if self.encoder is not None:
|
299 |
-
if iterate_batch:
|
300 |
-
latents = []
|
301 |
-
for i in range(audio.shape[0]):
|
302 |
-
latents.append(self.encoder(audio[i:i+1]))
|
303 |
-
latents = torch.cat(latents, dim=0)
|
304 |
-
else:
|
305 |
-
latents = self.encoder(audio)
|
306 |
-
else:
|
307 |
-
latents = audio
|
308 |
-
|
309 |
-
if self.bottleneck is not None:
|
310 |
-
# TODO: Add iterate batch logic, needs to merge the info dicts
|
311 |
-
latents, bottleneck_info = self.bottleneck.encode(latents, return_info=True, **kwargs)
|
312 |
-
|
313 |
-
info.update(bottleneck_info)
|
314 |
-
|
315 |
-
if return_info:
|
316 |
-
return latents, info
|
317 |
-
|
318 |
-
return latents
|
319 |
-
|
320 |
-
def decode(self, latents, iterate_batch=False, **kwargs):
|
321 |
-
|
322 |
-
if self.bottleneck is not None:
|
323 |
-
if iterate_batch:
|
324 |
-
decoded = []
|
325 |
-
for i in range(latents.shape[0]):
|
326 |
-
decoded.append(self.bottleneck.decode(latents[i:i+1]))
|
327 |
-
decoded = torch.cat(decoded, dim=0)
|
328 |
-
else:
|
329 |
-
latents = self.bottleneck.decode(latents)
|
330 |
-
|
331 |
-
if iterate_batch:
|
332 |
-
decoded = []
|
333 |
-
for i in range(latents.shape[0]):
|
334 |
-
decoded.append(self.decoder(latents[i:i+1]))
|
335 |
-
decoded = torch.cat(decoded, dim=0)
|
336 |
-
else:
|
337 |
-
decoded = self.decoder(latents, **kwargs)
|
338 |
-
|
339 |
-
if self.pretransform is not None:
|
340 |
-
if self.pretransform.enable_grad:
|
341 |
-
if iterate_batch:
|
342 |
-
decodeds = []
|
343 |
-
for i in range(decoded.shape[0]):
|
344 |
-
decodeds.append(self.pretransform.decode(decoded[i:i+1]))
|
345 |
-
decoded = torch.cat(decodeds, dim=0)
|
346 |
-
else:
|
347 |
-
decoded = self.pretransform.decode(decoded)
|
348 |
-
else:
|
349 |
-
with torch.no_grad():
|
350 |
-
if iterate_batch:
|
351 |
-
decodeds = []
|
352 |
-
for i in range(latents.shape[0]):
|
353 |
-
decodeds.append(self.pretransform.decode(decoded[i:i+1]))
|
354 |
-
decoded = torch.cat(decodeds, dim=0)
|
355 |
-
else:
|
356 |
-
decoded = self.pretransform.decode(decoded)
|
357 |
-
|
358 |
-
if self.soft_clip:
|
359 |
-
decoded = torch.tanh(decoded)
|
360 |
-
|
361 |
-
return decoded
|
362 |
-
|
363 |
-
def decode_tokens(self, tokens, **kwargs):
|
364 |
-
'''
|
365 |
-
Decode discrete tokens to audio
|
366 |
-
Only works with discrete autoencoders
|
367 |
-
'''
|
368 |
-
|
369 |
-
assert isinstance(self.bottleneck, DiscreteBottleneck), "decode_tokens only works with discrete autoencoders"
|
370 |
-
|
371 |
-
latents = self.bottleneck.decode_tokens(tokens, **kwargs)
|
372 |
-
|
373 |
-
return self.decode(latents, **kwargs)
|
374 |
-
|
375 |
-
|
376 |
-
def preprocess_audio_for_encoder(self, audio, in_sr):
|
377 |
-
'''
|
378 |
-
Preprocess single audio tensor (Channels x Length) to be compatible with the encoder.
|
379 |
-
If the model is mono, stereo audio will be converted to mono.
|
380 |
-
Audio will be silence-padded to be a multiple of the model's downsampling ratio.
|
381 |
-
Audio will be resampled to the model's sample rate.
|
382 |
-
The output will have batch size 1 and be shape (1 x Channels x Length)
|
383 |
-
'''
|
384 |
-
return self.preprocess_audio_list_for_encoder([audio], [in_sr])
|
385 |
-
|
386 |
-
def preprocess_audio_list_for_encoder(self, audio_list, in_sr_list):
|
387 |
-
'''
|
388 |
-
Preprocess a [list] of audio (Channels x Length) into a batch tensor to be compatable with the encoder.
|
389 |
-
The audio in that list can be of different lengths and channels.
|
390 |
-
in_sr can be an integer or list. If it's an integer it will be assumed it is the input sample_rate for every audio.
|
391 |
-
All audio will be resampled to the model's sample rate.
|
392 |
-
Audio will be silence-padded to the longest length, and further padded to be a multiple of the model's downsampling ratio.
|
393 |
-
If the model is mono, all audio will be converted to mono.
|
394 |
-
The output will be a tensor of shape (Batch x Channels x Length)
|
395 |
-
'''
|
396 |
-
batch_size = len(audio_list)
|
397 |
-
if isinstance(in_sr_list, int):
|
398 |
-
in_sr_list = [in_sr_list]*batch_size
|
399 |
-
assert len(in_sr_list) == batch_size, "list of sample rates must be the same length of audio_list"
|
400 |
-
new_audio = []
|
401 |
-
max_length = 0
|
402 |
-
# resample & find the max length
|
403 |
-
for i in range(batch_size):
|
404 |
-
audio = audio_list[i]
|
405 |
-
in_sr = in_sr_list[i]
|
406 |
-
if len(audio.shape) == 3 and audio.shape[0] == 1:
|
407 |
-
# batchsize 1 was given by accident. Just squeeze it.
|
408 |
-
audio = audio.squeeze(0)
|
409 |
-
elif len(audio.shape) == 1:
|
410 |
-
# Mono signal, channel dimension is missing, unsqueeze it in
|
411 |
-
audio = audio.unsqueeze(0)
|
412 |
-
assert len(audio.shape)==2, "Audio should be shape (Channels x Length) with no batch dimension"
|
413 |
-
# Resample audio
|
414 |
-
if in_sr != self.sample_rate:
|
415 |
-
resample_tf = T.Resample(in_sr, self.sample_rate).to(audio.device)
|
416 |
-
audio = resample_tf(audio)
|
417 |
-
new_audio.append(audio)
|
418 |
-
if audio.shape[-1] > max_length:
|
419 |
-
max_length = audio.shape[-1]
|
420 |
-
# Pad every audio to the same length, multiple of model's downsampling ratio
|
421 |
-
padded_audio_length = max_length + (self.min_length - (max_length % self.min_length)) % self.min_length
|
422 |
-
for i in range(batch_size):
|
423 |
-
# Pad it & if necessary, mixdown/duplicate stereo/mono channels to support model
|
424 |
-
new_audio[i] = prepare_audio(new_audio[i], in_sr=in_sr, target_sr=in_sr, target_length=padded_audio_length,
|
425 |
-
target_channels=self.in_channels, device=new_audio[i].device).squeeze(0)
|
426 |
-
# convert to tensor
|
427 |
-
return torch.stack(new_audio)
|
428 |
-
|
429 |
-
def encode_audio(self, audio, chunked=False, overlap=32, chunk_size=128, **kwargs):
|
430 |
-
'''
|
431 |
-
Encode audios into latents. Audios should already be preprocesed by preprocess_audio_for_encoder.
|
432 |
-
If chunked is True, split the audio into chunks of a given maximum size chunk_size, with given overlap.
|
433 |
-
Overlap and chunk_size params are both measured in number of latents (not audio samples)
|
434 |
-
# and therefore you likely could use the same values with decode_audio.
|
435 |
-
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size.
|
436 |
-
Every autoencoder will have a different receptive field size, and thus ideal overlap.
|
437 |
-
You can determine it empirically by diffing unchunked vs chunked output and looking at maximum diff.
|
438 |
-
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
|
439 |
-
Smaller chunk_size uses less memory, but more compute.
|
440 |
-
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
|
441 |
-
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
|
442 |
-
'''
|
443 |
-
if not chunked:
|
444 |
-
# default behavior. Encode the entire audio in parallel
|
445 |
-
return self.encode(audio, **kwargs)
|
446 |
-
else:
|
447 |
-
# CHUNKED ENCODING
|
448 |
-
# samples_per_latent is just the downsampling ratio (which is also the upsampling ratio)
|
449 |
-
samples_per_latent = self.downsampling_ratio
|
450 |
-
total_size = audio.shape[2] # in samples
|
451 |
-
batch_size = audio.shape[0]
|
452 |
-
chunk_size *= samples_per_latent # converting metric in latents to samples
|
453 |
-
overlap *= samples_per_latent # converting metric in latents to samples
|
454 |
-
hop_size = chunk_size - overlap
|
455 |
-
chunks = []
|
456 |
-
for i in range(0, total_size - chunk_size + 1, hop_size):
|
457 |
-
chunk = audio[:,:,i:i+chunk_size]
|
458 |
-
chunks.append(chunk)
|
459 |
-
if i+chunk_size != total_size:
|
460 |
-
# Final chunk
|
461 |
-
chunk = audio[:,:,-chunk_size:]
|
462 |
-
chunks.append(chunk)
|
463 |
-
chunks = torch.stack(chunks)
|
464 |
-
num_chunks = chunks.shape[0]
|
465 |
-
# Note: y_size might be a different value from the latent length used in diffusion training
|
466 |
-
# because we can encode audio of varying lengths
|
467 |
-
# However, the audio should've been padded to a multiple of samples_per_latent by now.
|
468 |
-
y_size = total_size // samples_per_latent
|
469 |
-
# Create an empty latent, we will populate it with chunks as we encode them
|
470 |
-
y_final = torch.zeros((batch_size,self.latent_dim,y_size)).to(audio.device)
|
471 |
-
for i in range(num_chunks):
|
472 |
-
x_chunk = chunks[i,:]
|
473 |
-
# encode the chunk
|
474 |
-
y_chunk = self.encode(x_chunk)
|
475 |
-
# figure out where to put the audio along the time domain
|
476 |
-
if i == num_chunks-1:
|
477 |
-
# final chunk always goes at the end
|
478 |
-
t_end = y_size
|
479 |
-
t_start = t_end - y_chunk.shape[2]
|
480 |
-
else:
|
481 |
-
t_start = i * hop_size // samples_per_latent
|
482 |
-
t_end = t_start + chunk_size // samples_per_latent
|
483 |
-
# remove the edges of the overlaps
|
484 |
-
ol = overlap//samples_per_latent//2
|
485 |
-
chunk_start = 0
|
486 |
-
chunk_end = y_chunk.shape[2]
|
487 |
-
if i > 0:
|
488 |
-
# no overlap for the start of the first chunk
|
489 |
-
t_start += ol
|
490 |
-
chunk_start += ol
|
491 |
-
if i < num_chunks-1:
|
492 |
-
# no overlap for the end of the last chunk
|
493 |
-
t_end -= ol
|
494 |
-
chunk_end -= ol
|
495 |
-
# paste the chunked audio into our y_final output audio
|
496 |
-
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
497 |
-
return y_final
|
498 |
-
|
499 |
-
def decode_audio(self, latents, chunked=False, overlap=32, chunk_size=128, **kwargs):
|
500 |
-
'''
|
501 |
-
Decode latents to audio.
|
502 |
-
If chunked is True, split the latents into chunks of a given maximum size chunk_size, with given overlap, both of which are measured in number of latents.
|
503 |
-
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size.
|
504 |
-
Every autoencoder will have a different receptive field size, and thus ideal overlap.
|
505 |
-
You can determine it empirically by diffing unchunked vs chunked audio and looking at maximum diff.
|
506 |
-
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
|
507 |
-
Smaller chunk_size uses less memory, but more compute.
|
508 |
-
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
|
509 |
-
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
|
510 |
-
'''
|
511 |
-
if not chunked:
|
512 |
-
# default behavior. Decode the entire latent in parallel
|
513 |
-
return self.decode(latents, **kwargs)
|
514 |
-
else:
|
515 |
-
# chunked decoding
|
516 |
-
hop_size = chunk_size - overlap
|
517 |
-
total_size = latents.shape[2]
|
518 |
-
batch_size = latents.shape[0]
|
519 |
-
chunks = []
|
520 |
-
for i in range(0, total_size - chunk_size + 1, hop_size):
|
521 |
-
chunk = latents[:,:,i:i+chunk_size]
|
522 |
-
chunks.append(chunk)
|
523 |
-
if i+chunk_size != total_size:
|
524 |
-
# Final chunk
|
525 |
-
chunk = latents[:,:,-chunk_size:]
|
526 |
-
chunks.append(chunk)
|
527 |
-
chunks = torch.stack(chunks)
|
528 |
-
num_chunks = chunks.shape[0]
|
529 |
-
# samples_per_latent is just the downsampling ratio
|
530 |
-
samples_per_latent = self.downsampling_ratio
|
531 |
-
# Create an empty waveform, we will populate it with chunks as decode them
|
532 |
-
y_size = total_size * samples_per_latent
|
533 |
-
y_final = torch.zeros((batch_size,self.out_channels,y_size)).to(latents.device)
|
534 |
-
for i in range(num_chunks):
|
535 |
-
x_chunk = chunks[i,:]
|
536 |
-
# decode the chunk
|
537 |
-
y_chunk = self.decode(x_chunk)
|
538 |
-
# figure out where to put the audio along the time domain
|
539 |
-
if i == num_chunks-1:
|
540 |
-
# final chunk always goes at the end
|
541 |
-
t_end = y_size
|
542 |
-
t_start = t_end - y_chunk.shape[2]
|
543 |
-
else:
|
544 |
-
t_start = i * hop_size * samples_per_latent
|
545 |
-
t_end = t_start + chunk_size * samples_per_latent
|
546 |
-
# remove the edges of the overlaps
|
547 |
-
ol = (overlap//2) * samples_per_latent
|
548 |
-
chunk_start = 0
|
549 |
-
chunk_end = y_chunk.shape[2]
|
550 |
-
if i > 0:
|
551 |
-
# no overlap for the start of the first chunk
|
552 |
-
t_start += ol
|
553 |
-
chunk_start += ol
|
554 |
-
if i < num_chunks-1:
|
555 |
-
# no overlap for the end of the last chunk
|
556 |
-
t_end -= ol
|
557 |
-
chunk_end -= ol
|
558 |
-
# paste the chunked audio into our y_final output audio
|
559 |
-
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
560 |
-
return y_final
|
561 |
-
|
562 |
-
|
563 |
-
class DiffusionAutoencoder(AudioAutoencoder):
|
564 |
-
def __init__(
|
565 |
-
self,
|
566 |
-
diffusion: ConditionedDiffusionModel,
|
567 |
-
diffusion_downsampling_ratio,
|
568 |
-
*args,
|
569 |
-
**kwargs
|
570 |
-
):
|
571 |
-
super().__init__(*args, **kwargs)
|
572 |
-
|
573 |
-
self.diffusion = diffusion
|
574 |
-
|
575 |
-
self.min_length = self.downsampling_ratio * diffusion_downsampling_ratio
|
576 |
-
|
577 |
-
if self.encoder is not None:
|
578 |
-
# Shrink the initial encoder parameters to avoid saturated latents
|
579 |
-
with torch.no_grad():
|
580 |
-
for param in self.encoder.parameters():
|
581 |
-
param *= 0.5
|
582 |
-
|
583 |
-
def decode(self, latents, steps=100):
|
584 |
-
|
585 |
-
upsampled_length = latents.shape[2] * self.downsampling_ratio
|
586 |
-
|
587 |
-
if self.bottleneck is not None:
|
588 |
-
latents = self.bottleneck.decode(latents)
|
589 |
-
|
590 |
-
if self.decoder is not None:
|
591 |
-
latents = self.decode(latents)
|
592 |
-
|
593 |
-
# Upsample latents to match diffusion length
|
594 |
-
if latents.shape[2] != upsampled_length:
|
595 |
-
latents = F.interpolate(latents, size=upsampled_length, mode='nearest')
|
596 |
-
|
597 |
-
noise = torch.randn(latents.shape[0], self.io_channels, upsampled_length, device=latents.device)
|
598 |
-
decoded = sample(self.diffusion, noise, steps, 0, input_concat_cond=latents)
|
599 |
-
|
600 |
-
if self.pretransform is not None:
|
601 |
-
if self.pretransform.enable_grad:
|
602 |
-
decoded = self.pretransform.decode(decoded)
|
603 |
-
else:
|
604 |
-
with torch.no_grad():
|
605 |
-
decoded = self.pretransform.decode(decoded)
|
606 |
-
|
607 |
-
return decoded
|
608 |
-
|
609 |
-
# AE factories
|
610 |
-
|
611 |
-
def create_encoder_from_config(encoder_config: Dict[str, Any]):
|
612 |
-
encoder_type = encoder_config.get("type", None)
|
613 |
-
assert encoder_type is not None, "Encoder type must be specified"
|
614 |
-
|
615 |
-
if encoder_type == "oobleck":
|
616 |
-
encoder = OobleckEncoder(
|
617 |
-
**encoder_config["config"]
|
618 |
-
)
|
619 |
-
|
620 |
-
elif encoder_type == "seanet":
|
621 |
-
from encodec.modules import SEANetEncoder
|
622 |
-
seanet_encoder_config = encoder_config["config"]
|
623 |
-
|
624 |
-
#SEANet encoder expects strides in reverse order
|
625 |
-
seanet_encoder_config["ratios"] = list(reversed(seanet_encoder_config.get("ratios", [2, 2, 2, 2, 2])))
|
626 |
-
encoder = SEANetEncoder(
|
627 |
-
**seanet_encoder_config
|
628 |
-
)
|
629 |
-
elif encoder_type == "dac":
|
630 |
-
dac_config = encoder_config["config"]
|
631 |
-
|
632 |
-
encoder = DACEncoderWrapper(**dac_config)
|
633 |
-
elif encoder_type == "local_attn":
|
634 |
-
from .local_attention import TransformerEncoder1D
|
635 |
-
|
636 |
-
local_attn_config = encoder_config["config"]
|
637 |
-
|
638 |
-
encoder = TransformerEncoder1D(
|
639 |
-
**local_attn_config
|
640 |
-
)
|
641 |
-
else:
|
642 |
-
raise ValueError(f"Unknown encoder type {encoder_type}")
|
643 |
-
|
644 |
-
requires_grad = encoder_config.get("requires_grad", True)
|
645 |
-
if not requires_grad:
|
646 |
-
for param in encoder.parameters():
|
647 |
-
param.requires_grad = False
|
648 |
-
|
649 |
-
return encoder
|
650 |
-
|
651 |
-
def create_decoder_from_config(decoder_config: Dict[str, Any]):
|
652 |
-
decoder_type = decoder_config.get("type", None)
|
653 |
-
assert decoder_type is not None, "Decoder type must be specified"
|
654 |
-
|
655 |
-
if decoder_type == "oobleck":
|
656 |
-
decoder = OobleckDecoder(
|
657 |
-
**decoder_config["config"]
|
658 |
-
)
|
659 |
-
elif decoder_type == "seanet":
|
660 |
-
from encodec.modules import SEANetDecoder
|
661 |
-
|
662 |
-
decoder = SEANetDecoder(
|
663 |
-
**decoder_config["config"]
|
664 |
-
)
|
665 |
-
elif decoder_type == "dac":
|
666 |
-
dac_config = decoder_config["config"]
|
667 |
-
|
668 |
-
decoder = DACDecoderWrapper(**dac_config)
|
669 |
-
elif decoder_type == "local_attn":
|
670 |
-
from .local_attention import TransformerDecoder1D
|
671 |
-
|
672 |
-
local_attn_config = decoder_config["config"]
|
673 |
-
|
674 |
-
decoder = TransformerDecoder1D(
|
675 |
-
**local_attn_config
|
676 |
-
)
|
677 |
-
else:
|
678 |
-
raise ValueError(f"Unknown decoder type {decoder_type}")
|
679 |
-
|
680 |
-
requires_grad = decoder_config.get("requires_grad", True)
|
681 |
-
if not requires_grad:
|
682 |
-
for param in decoder.parameters():
|
683 |
-
param.requires_grad = False
|
684 |
-
|
685 |
-
return decoder
|
686 |
-
|
687 |
-
def create_autoencoder_from_config(config: Dict[str, Any]):
|
688 |
-
|
689 |
-
ae_config = config["model"]
|
690 |
-
|
691 |
-
encoder = create_encoder_from_config(ae_config["encoder"])
|
692 |
-
decoder = create_decoder_from_config(ae_config["decoder"])
|
693 |
-
|
694 |
-
bottleneck = ae_config.get("bottleneck", None)
|
695 |
-
|
696 |
-
latent_dim = ae_config.get("latent_dim", None)
|
697 |
-
assert latent_dim is not None, "latent_dim must be specified in model config"
|
698 |
-
downsampling_ratio = ae_config.get("downsampling_ratio", None)
|
699 |
-
assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config"
|
700 |
-
io_channels = ae_config.get("io_channels", None)
|
701 |
-
assert io_channels is not None, "io_channels must be specified in model config"
|
702 |
-
sample_rate = config.get("sample_rate", None)
|
703 |
-
assert sample_rate is not None, "sample_rate must be specified in model config"
|
704 |
-
|
705 |
-
in_channels = ae_config.get("in_channels", None)
|
706 |
-
out_channels = ae_config.get("out_channels", None)
|
707 |
-
|
708 |
-
pretransform = ae_config.get("pretransform", None)
|
709 |
-
|
710 |
-
if pretransform is not None:
|
711 |
-
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
712 |
-
|
713 |
-
if bottleneck is not None:
|
714 |
-
bottleneck = create_bottleneck_from_config(bottleneck)
|
715 |
-
|
716 |
-
soft_clip = ae_config["decoder"].get("soft_clip", False)
|
717 |
-
|
718 |
-
return AudioAutoencoder(
|
719 |
-
encoder,
|
720 |
-
decoder,
|
721 |
-
io_channels=io_channels,
|
722 |
-
latent_dim=latent_dim,
|
723 |
-
downsampling_ratio=downsampling_ratio,
|
724 |
-
sample_rate=sample_rate,
|
725 |
-
bottleneck=bottleneck,
|
726 |
-
pretransform=pretransform,
|
727 |
-
in_channels=in_channels,
|
728 |
-
out_channels=out_channels,
|
729 |
-
soft_clip=soft_clip
|
730 |
-
)
|
731 |
-
|
732 |
-
def create_diffAE_from_config(config: Dict[str, Any]):
|
733 |
-
|
734 |
-
diffae_config = config["model"]
|
735 |
-
|
736 |
-
if "encoder" in diffae_config:
|
737 |
-
encoder = create_encoder_from_config(diffae_config["encoder"])
|
738 |
-
else:
|
739 |
-
encoder = None
|
740 |
-
|
741 |
-
if "decoder" in diffae_config:
|
742 |
-
decoder = create_decoder_from_config(diffae_config["decoder"])
|
743 |
-
else:
|
744 |
-
decoder = None
|
745 |
-
|
746 |
-
diffusion_model_type = diffae_config["diffusion"]["type"]
|
747 |
-
|
748 |
-
if diffusion_model_type == "DAU1d":
|
749 |
-
diffusion = DAU1DCondWrapper(**diffae_config["diffusion"]["config"])
|
750 |
-
elif diffusion_model_type == "adp_1d":
|
751 |
-
diffusion = UNet1DCondWrapper(**diffae_config["diffusion"]["config"])
|
752 |
-
elif diffusion_model_type == "dit":
|
753 |
-
diffusion = DiTWrapper(**diffae_config["diffusion"]["config"])
|
754 |
-
|
755 |
-
latent_dim = diffae_config.get("latent_dim", None)
|
756 |
-
assert latent_dim is not None, "latent_dim must be specified in model config"
|
757 |
-
downsampling_ratio = diffae_config.get("downsampling_ratio", None)
|
758 |
-
assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config"
|
759 |
-
io_channels = diffae_config.get("io_channels", None)
|
760 |
-
assert io_channels is not None, "io_channels must be specified in model config"
|
761 |
-
sample_rate = config.get("sample_rate", None)
|
762 |
-
assert sample_rate is not None, "sample_rate must be specified in model config"
|
763 |
-
|
764 |
-
bottleneck = diffae_config.get("bottleneck", None)
|
765 |
-
|
766 |
-
pretransform = diffae_config.get("pretransform", None)
|
767 |
-
|
768 |
-
if pretransform is not None:
|
769 |
-
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
770 |
-
|
771 |
-
if bottleneck is not None:
|
772 |
-
bottleneck = create_bottleneck_from_config(bottleneck)
|
773 |
-
|
774 |
-
diffusion_downsampling_ratio = None,
|
775 |
-
|
776 |
-
if diffusion_model_type == "DAU1d":
|
777 |
-
diffusion_downsampling_ratio = np.prod(diffae_config["diffusion"]["config"]["strides"])
|
778 |
-
elif diffusion_model_type == "adp_1d":
|
779 |
-
diffusion_downsampling_ratio = np.prod(diffae_config["diffusion"]["config"]["factors"])
|
780 |
-
elif diffusion_model_type == "dit":
|
781 |
-
diffusion_downsampling_ratio = 1
|
782 |
-
|
783 |
-
return DiffusionAutoencoder(
|
784 |
-
encoder=encoder,
|
785 |
-
decoder=decoder,
|
786 |
-
diffusion=diffusion,
|
787 |
-
io_channels=io_channels,
|
788 |
-
sample_rate=sample_rate,
|
789 |
-
latent_dim=latent_dim,
|
790 |
-
downsampling_ratio=downsampling_ratio,
|
791 |
-
diffusion_downsampling_ratio=diffusion_downsampling_ratio,
|
792 |
-
bottleneck=bottleneck,
|
793 |
-
pretransform=pretransform
|
794 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/blocks.py
DELETED
@@ -1,339 +0,0 @@
|
|
1 |
-
from functools import reduce
|
2 |
-
import math
|
3 |
-
import numpy as np
|
4 |
-
import torch
|
5 |
-
from torch import nn
|
6 |
-
from torch.nn import functional as F
|
7 |
-
|
8 |
-
from torch.backends.cuda import sdp_kernel
|
9 |
-
from packaging import version
|
10 |
-
|
11 |
-
from dac.nn.layers import Snake1d
|
12 |
-
|
13 |
-
class ResidualBlock(nn.Module):
|
14 |
-
def __init__(self, main, skip=None):
|
15 |
-
super().__init__()
|
16 |
-
self.main = nn.Sequential(*main)
|
17 |
-
self.skip = skip if skip else nn.Identity()
|
18 |
-
|
19 |
-
def forward(self, input):
|
20 |
-
return self.main(input) + self.skip(input)
|
21 |
-
|
22 |
-
class ResConvBlock(ResidualBlock):
|
23 |
-
def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False):
|
24 |
-
skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False)
|
25 |
-
super().__init__([
|
26 |
-
nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
27 |
-
nn.GroupNorm(1, c_mid),
|
28 |
-
Snake1d(c_mid) if use_snake else nn.GELU(),
|
29 |
-
nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
30 |
-
nn.GroupNorm(1, c_out) if not is_last else nn.Identity(),
|
31 |
-
(Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(),
|
32 |
-
], skip)
|
33 |
-
|
34 |
-
class SelfAttention1d(nn.Module):
|
35 |
-
def __init__(self, c_in, n_head=1, dropout_rate=0.):
|
36 |
-
super().__init__()
|
37 |
-
assert c_in % n_head == 0
|
38 |
-
self.norm = nn.GroupNorm(1, c_in)
|
39 |
-
self.n_head = n_head
|
40 |
-
self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1)
|
41 |
-
self.out_proj = nn.Conv1d(c_in, c_in, 1)
|
42 |
-
self.dropout = nn.Dropout(dropout_rate, inplace=True)
|
43 |
-
|
44 |
-
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
45 |
-
|
46 |
-
if not self.use_flash:
|
47 |
-
return
|
48 |
-
|
49 |
-
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
50 |
-
|
51 |
-
if device_properties.major == 8 and device_properties.minor == 0:
|
52 |
-
# Use flash attention for A100 GPUs
|
53 |
-
self.sdp_kernel_config = (True, False, False)
|
54 |
-
else:
|
55 |
-
# Don't use flash attention for other GPUs
|
56 |
-
self.sdp_kernel_config = (False, True, True)
|
57 |
-
|
58 |
-
def forward(self, input):
|
59 |
-
n, c, s = input.shape
|
60 |
-
qkv = self.qkv_proj(self.norm(input))
|
61 |
-
qkv = qkv.view(
|
62 |
-
[n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3)
|
63 |
-
q, k, v = qkv.chunk(3, dim=1)
|
64 |
-
scale = k.shape[3]**-0.25
|
65 |
-
|
66 |
-
if self.use_flash:
|
67 |
-
with sdp_kernel(*self.sdp_kernel_config):
|
68 |
-
y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s])
|
69 |
-
else:
|
70 |
-
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
|
71 |
-
y = (att @ v).transpose(2, 3).contiguous().view([n, c, s])
|
72 |
-
|
73 |
-
|
74 |
-
return input + self.dropout(self.out_proj(y))
|
75 |
-
|
76 |
-
class SkipBlock(nn.Module):
|
77 |
-
def __init__(self, *main):
|
78 |
-
super().__init__()
|
79 |
-
self.main = nn.Sequential(*main)
|
80 |
-
|
81 |
-
def forward(self, input):
|
82 |
-
return torch.cat([self.main(input), input], dim=1)
|
83 |
-
|
84 |
-
class FourierFeatures(nn.Module):
|
85 |
-
def __init__(self, in_features, out_features, std=1.):
|
86 |
-
super().__init__()
|
87 |
-
assert out_features % 2 == 0
|
88 |
-
self.weight = nn.Parameter(torch.randn(
|
89 |
-
[out_features // 2, in_features]) * std)
|
90 |
-
|
91 |
-
def forward(self, input):
|
92 |
-
f = 2 * math.pi * input @ self.weight.T
|
93 |
-
return torch.cat([f.cos(), f.sin()], dim=-1)
|
94 |
-
|
95 |
-
def expand_to_planes(input, shape):
|
96 |
-
return input[..., None].repeat([1, 1, shape[2]])
|
97 |
-
|
98 |
-
_kernels = {
|
99 |
-
'linear':
|
100 |
-
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
|
101 |
-
'cubic':
|
102 |
-
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
|
103 |
-
0.43359375, 0.11328125, -0.03515625, -0.01171875],
|
104 |
-
'lanczos3':
|
105 |
-
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
|
106 |
-
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
|
107 |
-
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
|
108 |
-
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
|
109 |
-
}
|
110 |
-
|
111 |
-
class Downsample1d(nn.Module):
|
112 |
-
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
113 |
-
super().__init__()
|
114 |
-
self.pad_mode = pad_mode
|
115 |
-
kernel_1d = torch.tensor(_kernels[kernel])
|
116 |
-
self.pad = kernel_1d.shape[0] // 2 - 1
|
117 |
-
self.register_buffer('kernel', kernel_1d)
|
118 |
-
self.channels_last = channels_last
|
119 |
-
|
120 |
-
def forward(self, x):
|
121 |
-
if self.channels_last:
|
122 |
-
x = x.permute(0, 2, 1)
|
123 |
-
x = F.pad(x, (self.pad,) * 2, self.pad_mode)
|
124 |
-
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
125 |
-
indices = torch.arange(x.shape[1], device=x.device)
|
126 |
-
weight[indices, indices] = self.kernel.to(weight)
|
127 |
-
x = F.conv1d(x, weight, stride=2)
|
128 |
-
if self.channels_last:
|
129 |
-
x = x.permute(0, 2, 1)
|
130 |
-
return x
|
131 |
-
|
132 |
-
|
133 |
-
class Upsample1d(nn.Module):
|
134 |
-
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
135 |
-
super().__init__()
|
136 |
-
self.pad_mode = pad_mode
|
137 |
-
kernel_1d = torch.tensor(_kernels[kernel]) * 2
|
138 |
-
self.pad = kernel_1d.shape[0] // 2 - 1
|
139 |
-
self.register_buffer('kernel', kernel_1d)
|
140 |
-
self.channels_last = channels_last
|
141 |
-
|
142 |
-
def forward(self, x):
|
143 |
-
if self.channels_last:
|
144 |
-
x = x.permute(0, 2, 1)
|
145 |
-
x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode)
|
146 |
-
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
147 |
-
indices = torch.arange(x.shape[1], device=x.device)
|
148 |
-
weight[indices, indices] = self.kernel.to(weight)
|
149 |
-
x = F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1)
|
150 |
-
if self.channels_last:
|
151 |
-
x = x.permute(0, 2, 1)
|
152 |
-
return x
|
153 |
-
|
154 |
-
def Downsample1d_2(
|
155 |
-
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
|
156 |
-
) -> nn.Module:
|
157 |
-
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"
|
158 |
-
|
159 |
-
return nn.Conv1d(
|
160 |
-
in_channels=in_channels,
|
161 |
-
out_channels=out_channels,
|
162 |
-
kernel_size=factor * kernel_multiplier + 1,
|
163 |
-
stride=factor,
|
164 |
-
padding=factor * (kernel_multiplier // 2),
|
165 |
-
)
|
166 |
-
|
167 |
-
|
168 |
-
def Upsample1d_2(
|
169 |
-
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
|
170 |
-
) -> nn.Module:
|
171 |
-
|
172 |
-
if factor == 1:
|
173 |
-
return nn.Conv1d(
|
174 |
-
in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1
|
175 |
-
)
|
176 |
-
|
177 |
-
if use_nearest:
|
178 |
-
return nn.Sequential(
|
179 |
-
nn.Upsample(scale_factor=factor, mode="nearest"),
|
180 |
-
nn.Conv1d(
|
181 |
-
in_channels=in_channels,
|
182 |
-
out_channels=out_channels,
|
183 |
-
kernel_size=3,
|
184 |
-
padding=1,
|
185 |
-
),
|
186 |
-
)
|
187 |
-
else:
|
188 |
-
return nn.ConvTranspose1d(
|
189 |
-
in_channels=in_channels,
|
190 |
-
out_channels=out_channels,
|
191 |
-
kernel_size=factor * 2,
|
192 |
-
stride=factor,
|
193 |
-
padding=factor // 2 + factor % 2,
|
194 |
-
output_padding=factor % 2,
|
195 |
-
)
|
196 |
-
|
197 |
-
def zero_init(layer):
|
198 |
-
nn.init.zeros_(layer.weight)
|
199 |
-
if layer.bias is not None:
|
200 |
-
nn.init.zeros_(layer.bias)
|
201 |
-
return layer
|
202 |
-
|
203 |
-
def rms_norm(x, scale, eps):
|
204 |
-
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
205 |
-
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
206 |
-
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
207 |
-
return x * scale.to(x.dtype)
|
208 |
-
|
209 |
-
#rms_norm = torch.compile(rms_norm)
|
210 |
-
|
211 |
-
class AdaRMSNorm(nn.Module):
|
212 |
-
def __init__(self, features, cond_features, eps=1e-6):
|
213 |
-
super().__init__()
|
214 |
-
self.eps = eps
|
215 |
-
self.linear = zero_init(nn.Linear(cond_features, features, bias=False))
|
216 |
-
|
217 |
-
def extra_repr(self):
|
218 |
-
return f"eps={self.eps},"
|
219 |
-
|
220 |
-
def forward(self, x, cond):
|
221 |
-
return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps)
|
222 |
-
|
223 |
-
def normalize(x, eps=1e-4):
|
224 |
-
dim = list(range(1, x.ndim))
|
225 |
-
n = torch.linalg.vector_norm(x, dim=dim, keepdim=True)
|
226 |
-
alpha = np.sqrt(n.numel() / x.numel())
|
227 |
-
return x / torch.add(eps, n, alpha=alpha)
|
228 |
-
|
229 |
-
class ForcedWNConv1d(nn.Module):
|
230 |
-
def __init__(self, in_channels, out_channels, kernel_size=1):
|
231 |
-
super().__init__()
|
232 |
-
self.weight = nn.Parameter(torch.randn([out_channels, in_channels, kernel_size]))
|
233 |
-
|
234 |
-
def forward(self, x):
|
235 |
-
if self.training:
|
236 |
-
with torch.no_grad():
|
237 |
-
self.weight.copy_(normalize(self.weight))
|
238 |
-
|
239 |
-
fan_in = self.weight[0].numel()
|
240 |
-
|
241 |
-
w = normalize(self.weight) / math.sqrt(fan_in)
|
242 |
-
|
243 |
-
return F.conv1d(x, w, padding='same')
|
244 |
-
|
245 |
-
# Kernels
|
246 |
-
|
247 |
-
use_compile = True
|
248 |
-
|
249 |
-
def compile(function, *args, **kwargs):
|
250 |
-
if not use_compile:
|
251 |
-
return function
|
252 |
-
try:
|
253 |
-
return torch.compile(function, *args, **kwargs)
|
254 |
-
except RuntimeError:
|
255 |
-
return function
|
256 |
-
|
257 |
-
|
258 |
-
@compile
|
259 |
-
def linear_geglu(x, weight, bias=None):
|
260 |
-
x = x @ weight.mT
|
261 |
-
if bias is not None:
|
262 |
-
x = x + bias
|
263 |
-
x, gate = x.chunk(2, dim=-1)
|
264 |
-
return x * F.gelu(gate)
|
265 |
-
|
266 |
-
|
267 |
-
@compile
|
268 |
-
def rms_norm(x, scale, eps):
|
269 |
-
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
270 |
-
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
271 |
-
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
272 |
-
return x * scale.to(x.dtype)
|
273 |
-
|
274 |
-
# Layers
|
275 |
-
|
276 |
-
class LinearGEGLU(nn.Linear):
|
277 |
-
def __init__(self, in_features, out_features, bias=True):
|
278 |
-
super().__init__(in_features, out_features * 2, bias=bias)
|
279 |
-
self.out_features = out_features
|
280 |
-
|
281 |
-
def forward(self, x):
|
282 |
-
return linear_geglu(x, self.weight, self.bias)
|
283 |
-
|
284 |
-
|
285 |
-
class RMSNorm(nn.Module):
|
286 |
-
def __init__(self, shape, fix_scale = False, eps=1e-6):
|
287 |
-
super().__init__()
|
288 |
-
self.eps = eps
|
289 |
-
|
290 |
-
if fix_scale:
|
291 |
-
self.register_buffer("scale", torch.ones(shape))
|
292 |
-
else:
|
293 |
-
self.scale = nn.Parameter(torch.ones(shape))
|
294 |
-
|
295 |
-
def extra_repr(self):
|
296 |
-
return f"shape={tuple(self.scale.shape)}, eps={self.eps}"
|
297 |
-
|
298 |
-
def forward(self, x):
|
299 |
-
return rms_norm(x, self.scale, self.eps)
|
300 |
-
|
301 |
-
def snake_beta(x, alpha, beta):
|
302 |
-
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
|
303 |
-
|
304 |
-
# try:
|
305 |
-
# snake_beta = torch.compile(snake_beta)
|
306 |
-
# except RuntimeError:
|
307 |
-
# pass
|
308 |
-
|
309 |
-
# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
|
310 |
-
# License available in LICENSES/LICENSE_NVIDIA.txt
|
311 |
-
class SnakeBeta(nn.Module):
|
312 |
-
|
313 |
-
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
314 |
-
super(SnakeBeta, self).__init__()
|
315 |
-
self.in_features = in_features
|
316 |
-
|
317 |
-
# initialize alpha
|
318 |
-
self.alpha_logscale = alpha_logscale
|
319 |
-
if self.alpha_logscale: # log scale alphas initialized to zeros
|
320 |
-
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
321 |
-
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
322 |
-
else: # linear scale alphas initialized to ones
|
323 |
-
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
324 |
-
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
325 |
-
|
326 |
-
self.alpha.requires_grad = alpha_trainable
|
327 |
-
self.beta.requires_grad = alpha_trainable
|
328 |
-
|
329 |
-
self.no_div_by_zero = 0.000000001
|
330 |
-
|
331 |
-
def forward(self, x):
|
332 |
-
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
333 |
-
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
334 |
-
if self.alpha_logscale:
|
335 |
-
alpha = torch.exp(alpha)
|
336 |
-
beta = torch.exp(beta)
|
337 |
-
x = snake_beta(x, alpha, beta)
|
338 |
-
|
339 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/bottleneck.py
DELETED
@@ -1,326 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
|
5 |
-
from einops import rearrange
|
6 |
-
from vector_quantize_pytorch import ResidualVQ, FSQ
|
7 |
-
from dac.nn.quantize import ResidualVectorQuantize as DACResidualVQ
|
8 |
-
|
9 |
-
class Bottleneck(nn.Module):
|
10 |
-
def __init__(self, is_discrete: bool = False):
|
11 |
-
super().__init__()
|
12 |
-
|
13 |
-
self.is_discrete = is_discrete
|
14 |
-
|
15 |
-
def encode(self, x, return_info=False, **kwargs):
|
16 |
-
raise NotImplementedError
|
17 |
-
|
18 |
-
def decode(self, x):
|
19 |
-
raise NotImplementedError
|
20 |
-
|
21 |
-
class DiscreteBottleneck(Bottleneck):
|
22 |
-
def __init__(self, num_quantizers, codebook_size, tokens_id):
|
23 |
-
super().__init__(is_discrete=True)
|
24 |
-
|
25 |
-
self.num_quantizers = num_quantizers
|
26 |
-
self.codebook_size = codebook_size
|
27 |
-
self.tokens_id = tokens_id
|
28 |
-
|
29 |
-
def decode_tokens(self, codes, **kwargs):
|
30 |
-
raise NotImplementedError
|
31 |
-
|
32 |
-
class TanhBottleneck(Bottleneck):
|
33 |
-
def __init__(self):
|
34 |
-
super().__init__(is_discrete=False)
|
35 |
-
self.tanh = nn.Tanh()
|
36 |
-
|
37 |
-
def encode(self, x, return_info=False):
|
38 |
-
info = {}
|
39 |
-
|
40 |
-
x = torch.tanh(x)
|
41 |
-
|
42 |
-
if return_info:
|
43 |
-
return x, info
|
44 |
-
else:
|
45 |
-
return x
|
46 |
-
|
47 |
-
def decode(self, x):
|
48 |
-
return x
|
49 |
-
|
50 |
-
def vae_sample(mean, scale):
|
51 |
-
stdev = nn.functional.softplus(scale) + 1e-4
|
52 |
-
var = stdev * stdev
|
53 |
-
logvar = torch.log(var)
|
54 |
-
latents = torch.randn_like(mean) * stdev + mean
|
55 |
-
|
56 |
-
kl = (mean * mean + var - logvar - 1).sum(1).mean()
|
57 |
-
|
58 |
-
return latents, kl
|
59 |
-
|
60 |
-
class VAEBottleneck(Bottleneck):
|
61 |
-
def __init__(self):
|
62 |
-
super().__init__(is_discrete=False)
|
63 |
-
|
64 |
-
def encode(self, x, return_info=False, **kwargs):
|
65 |
-
info = {}
|
66 |
-
|
67 |
-
mean, scale = x.chunk(2, dim=1)
|
68 |
-
|
69 |
-
x, kl = vae_sample(mean, scale)
|
70 |
-
|
71 |
-
info["kl"] = kl
|
72 |
-
|
73 |
-
if return_info:
|
74 |
-
return x, info
|
75 |
-
else:
|
76 |
-
return x
|
77 |
-
|
78 |
-
def decode(self, x):
|
79 |
-
return x
|
80 |
-
|
81 |
-
def compute_mean_kernel(x, y):
|
82 |
-
kernel_input = (x[:, None] - y[None]).pow(2).mean(2) / x.shape[-1]
|
83 |
-
return torch.exp(-kernel_input).mean()
|
84 |
-
|
85 |
-
def compute_mmd(latents):
|
86 |
-
latents_reshaped = latents.permute(0, 2, 1).reshape(-1, latents.shape[1])
|
87 |
-
noise = torch.randn_like(latents_reshaped)
|
88 |
-
|
89 |
-
latents_kernel = compute_mean_kernel(latents_reshaped, latents_reshaped)
|
90 |
-
noise_kernel = compute_mean_kernel(noise, noise)
|
91 |
-
latents_noise_kernel = compute_mean_kernel(latents_reshaped, noise)
|
92 |
-
|
93 |
-
mmd = latents_kernel + noise_kernel - 2 * latents_noise_kernel
|
94 |
-
return mmd.mean()
|
95 |
-
|
96 |
-
class WassersteinBottleneck(Bottleneck):
|
97 |
-
def __init__(self, noise_augment_dim: int = 0):
|
98 |
-
super().__init__(is_discrete=False)
|
99 |
-
|
100 |
-
self.noise_augment_dim = noise_augment_dim
|
101 |
-
|
102 |
-
def encode(self, x, return_info=False):
|
103 |
-
info = {}
|
104 |
-
|
105 |
-
if self.training and return_info:
|
106 |
-
mmd = compute_mmd(x)
|
107 |
-
info["mmd"] = mmd
|
108 |
-
|
109 |
-
if return_info:
|
110 |
-
return x, info
|
111 |
-
|
112 |
-
return x
|
113 |
-
|
114 |
-
def decode(self, x):
|
115 |
-
|
116 |
-
if self.noise_augment_dim > 0:
|
117 |
-
noise = torch.randn(x.shape[0], self.noise_augment_dim,
|
118 |
-
x.shape[-1]).type_as(x)
|
119 |
-
x = torch.cat([x, noise], dim=1)
|
120 |
-
|
121 |
-
return x
|
122 |
-
|
123 |
-
class L2Bottleneck(Bottleneck):
|
124 |
-
def __init__(self):
|
125 |
-
super().__init__(is_discrete=False)
|
126 |
-
|
127 |
-
def encode(self, x, return_info=False):
|
128 |
-
info = {}
|
129 |
-
|
130 |
-
x = F.normalize(x, dim=1)
|
131 |
-
|
132 |
-
if return_info:
|
133 |
-
return x, info
|
134 |
-
else:
|
135 |
-
return x
|
136 |
-
|
137 |
-
def decode(self, x):
|
138 |
-
return F.normalize(x, dim=1)
|
139 |
-
|
140 |
-
class RVQBottleneck(DiscreteBottleneck):
|
141 |
-
def __init__(self, **quantizer_kwargs):
|
142 |
-
super().__init__(num_quantizers = quantizer_kwargs["num_quantizers"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "quantizer_indices")
|
143 |
-
self.quantizer = ResidualVQ(**quantizer_kwargs)
|
144 |
-
self.num_quantizers = quantizer_kwargs["num_quantizers"]
|
145 |
-
|
146 |
-
def encode(self, x, return_info=False, **kwargs):
|
147 |
-
info = {}
|
148 |
-
|
149 |
-
x = rearrange(x, "b c n -> b n c")
|
150 |
-
x, indices, loss = self.quantizer(x)
|
151 |
-
x = rearrange(x, "b n c -> b c n")
|
152 |
-
|
153 |
-
info["quantizer_indices"] = indices
|
154 |
-
info["quantizer_loss"] = loss.mean()
|
155 |
-
|
156 |
-
if return_info:
|
157 |
-
return x, info
|
158 |
-
else:
|
159 |
-
return x
|
160 |
-
|
161 |
-
def decode(self, x):
|
162 |
-
return x
|
163 |
-
|
164 |
-
def decode_tokens(self, codes, **kwargs):
|
165 |
-
latents = self.quantizer.get_outputs_from_indices(codes)
|
166 |
-
|
167 |
-
return self.decode(latents, **kwargs)
|
168 |
-
|
169 |
-
class RVQVAEBottleneck(DiscreteBottleneck):
|
170 |
-
def __init__(self, **quantizer_kwargs):
|
171 |
-
super().__init__(num_quantizers = quantizer_kwargs["num_quantizers"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "quantizer_indices")
|
172 |
-
self.quantizer = ResidualVQ(**quantizer_kwargs)
|
173 |
-
self.num_quantizers = quantizer_kwargs["num_quantizers"]
|
174 |
-
|
175 |
-
def encode(self, x, return_info=False):
|
176 |
-
info = {}
|
177 |
-
|
178 |
-
x, kl = vae_sample(*x.chunk(2, dim=1))
|
179 |
-
|
180 |
-
info["kl"] = kl
|
181 |
-
|
182 |
-
x = rearrange(x, "b c n -> b n c")
|
183 |
-
x, indices, loss = self.quantizer(x)
|
184 |
-
x = rearrange(x, "b n c -> b c n")
|
185 |
-
|
186 |
-
info["quantizer_indices"] = indices
|
187 |
-
info["quantizer_loss"] = loss.mean()
|
188 |
-
|
189 |
-
if return_info:
|
190 |
-
return x, info
|
191 |
-
else:
|
192 |
-
return x
|
193 |
-
|
194 |
-
def decode(self, x):
|
195 |
-
return x
|
196 |
-
|
197 |
-
def decode_tokens(self, codes, **kwargs):
|
198 |
-
latents = self.quantizer.get_outputs_from_indices(codes)
|
199 |
-
|
200 |
-
return self.decode(latents, **kwargs)
|
201 |
-
|
202 |
-
class DACRVQBottleneck(DiscreteBottleneck):
|
203 |
-
def __init__(self, quantize_on_decode=False, **quantizer_kwargs):
|
204 |
-
super().__init__(num_quantizers = quantizer_kwargs["n_codebooks"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "codes")
|
205 |
-
self.quantizer = DACResidualVQ(**quantizer_kwargs)
|
206 |
-
self.num_quantizers = quantizer_kwargs["n_codebooks"]
|
207 |
-
self.quantize_on_decode = quantize_on_decode
|
208 |
-
|
209 |
-
def encode(self, x, return_info=False, **kwargs):
|
210 |
-
info = {}
|
211 |
-
|
212 |
-
info["pre_quantizer"] = x
|
213 |
-
|
214 |
-
if self.quantize_on_decode:
|
215 |
-
return x, info if return_info else x
|
216 |
-
|
217 |
-
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(x, **kwargs)
|
218 |
-
|
219 |
-
output = {
|
220 |
-
"z": z,
|
221 |
-
"codes": codes,
|
222 |
-
"latents": latents,
|
223 |
-
"vq/commitment_loss": commitment_loss,
|
224 |
-
"vq/codebook_loss": codebook_loss,
|
225 |
-
}
|
226 |
-
|
227 |
-
output["vq/commitment_loss"] /= self.num_quantizers
|
228 |
-
output["vq/codebook_loss"] /= self.num_quantizers
|
229 |
-
|
230 |
-
info.update(output)
|
231 |
-
|
232 |
-
if return_info:
|
233 |
-
return output["z"], info
|
234 |
-
|
235 |
-
return output["z"]
|
236 |
-
|
237 |
-
def decode(self, x):
|
238 |
-
|
239 |
-
if self.quantize_on_decode:
|
240 |
-
x = self.quantizer(x)[0]
|
241 |
-
|
242 |
-
return x
|
243 |
-
|
244 |
-
def decode_tokens(self, codes, **kwargs):
|
245 |
-
latents, _, _ = self.quantizer.from_codes(codes)
|
246 |
-
|
247 |
-
return self.decode(latents, **kwargs)
|
248 |
-
|
249 |
-
class DACRVQVAEBottleneck(DiscreteBottleneck):
|
250 |
-
def __init__(self, quantize_on_decode=False, **quantizer_kwargs):
|
251 |
-
super().__init__(num_quantizers = quantizer_kwargs["n_codebooks"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "codes")
|
252 |
-
self.quantizer = DACResidualVQ(**quantizer_kwargs)
|
253 |
-
self.num_quantizers = quantizer_kwargs["n_codebooks"]
|
254 |
-
self.quantize_on_decode = quantize_on_decode
|
255 |
-
|
256 |
-
def encode(self, x, return_info=False, n_quantizers: int = None):
|
257 |
-
info = {}
|
258 |
-
|
259 |
-
mean, scale = x.chunk(2, dim=1)
|
260 |
-
|
261 |
-
x, kl = vae_sample(mean, scale)
|
262 |
-
|
263 |
-
info["pre_quantizer"] = x
|
264 |
-
info["kl"] = kl
|
265 |
-
|
266 |
-
if self.quantize_on_decode:
|
267 |
-
return x, info if return_info else x
|
268 |
-
|
269 |
-
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(x, n_quantizers=n_quantizers)
|
270 |
-
|
271 |
-
output = {
|
272 |
-
"z": z,
|
273 |
-
"codes": codes,
|
274 |
-
"latents": latents,
|
275 |
-
"vq/commitment_loss": commitment_loss,
|
276 |
-
"vq/codebook_loss": codebook_loss,
|
277 |
-
}
|
278 |
-
|
279 |
-
output["vq/commitment_loss"] /= self.num_quantizers
|
280 |
-
output["vq/codebook_loss"] /= self.num_quantizers
|
281 |
-
|
282 |
-
info.update(output)
|
283 |
-
|
284 |
-
if return_info:
|
285 |
-
return output["z"], info
|
286 |
-
|
287 |
-
return output["z"]
|
288 |
-
|
289 |
-
def decode(self, x):
|
290 |
-
|
291 |
-
if self.quantize_on_decode:
|
292 |
-
x = self.quantizer(x)[0]
|
293 |
-
|
294 |
-
return x
|
295 |
-
|
296 |
-
def decode_tokens(self, codes, **kwargs):
|
297 |
-
latents, _, _ = self.quantizer.from_codes(codes)
|
298 |
-
|
299 |
-
return self.decode(latents, **kwargs)
|
300 |
-
|
301 |
-
class FSQBottleneck(DiscreteBottleneck):
|
302 |
-
def __init__(self, dim, levels):
|
303 |
-
super().__init__(num_quantizers = 1, codebook_size = levels ** dim, tokens_id = "quantizer_indices")
|
304 |
-
self.quantizer = FSQ(levels=[levels] * dim)
|
305 |
-
|
306 |
-
def encode(self, x, return_info=False):
|
307 |
-
info = {}
|
308 |
-
|
309 |
-
x = rearrange(x, "b c n -> b n c")
|
310 |
-
x, indices = self.quantizer(x)
|
311 |
-
x = rearrange(x, "b n c -> b c n")
|
312 |
-
|
313 |
-
info["quantizer_indices"] = indices
|
314 |
-
|
315 |
-
if return_info:
|
316 |
-
return x, info
|
317 |
-
else:
|
318 |
-
return x
|
319 |
-
|
320 |
-
def decode(self, x):
|
321 |
-
return x
|
322 |
-
|
323 |
-
def decode_tokens(self, tokens, **kwargs):
|
324 |
-
latents = self.quantizer.indices_to_codes(tokens)
|
325 |
-
|
326 |
-
return self.decode(latents, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/codebook_patterns.py
DELETED
@@ -1,545 +0,0 @@
|
|
1 |
-
# Copied from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/codebooks_patterns.py under MIT License
|
2 |
-
# License available in LICENSES/LICENSE_META.txt
|
3 |
-
|
4 |
-
from collections import namedtuple
|
5 |
-
from dataclasses import dataclass
|
6 |
-
from functools import lru_cache
|
7 |
-
import logging
|
8 |
-
import typing as tp
|
9 |
-
|
10 |
-
from abc import ABC, abstractmethod
|
11 |
-
import torch
|
12 |
-
|
13 |
-
LayoutCoord = namedtuple('LayoutCoord', ['t', 'q']) # (timestep, codebook index)
|
14 |
-
PatternLayout = tp.List[tp.List[LayoutCoord]] # Sequence of coordinates
|
15 |
-
logger = logging.getLogger(__name__)
|
16 |
-
|
17 |
-
|
18 |
-
@dataclass
|
19 |
-
class Pattern:
|
20 |
-
"""Base implementation of a pattern over a sequence with multiple codebooks.
|
21 |
-
|
22 |
-
The codebook pattern consists in a layout, defining for each sequence step
|
23 |
-
the list of coordinates of each codebook timestep in the resulting interleaved sequence.
|
24 |
-
The first item of the pattern is always an empty list in order to properly insert a special token
|
25 |
-
to start with. For convenience, we also keep track of ``n_q`` the number of codebooks used for the pattern
|
26 |
-
and ``timesteps`` the number of timesteps corresponding to the original sequence.
|
27 |
-
|
28 |
-
The pattern provides convenient methods to build and revert interleaved sequences from it:
|
29 |
-
``build_pattern_sequence`` maps a given a dense input tensor of multi-codebook sequence from [B, K, T]
|
30 |
-
to the interleaved sequence of shape [B, K, S] applying the pattern, with B being the batch size,
|
31 |
-
K being the number of codebooks, T the number of original timesteps and S the number of sequence steps
|
32 |
-
for the output sequence. The unfilled positions are replaced with a special token and the built sequence
|
33 |
-
is returned along with a mask indicating valid tokens.
|
34 |
-
``revert_pattern_sequence`` maps back an interleaved sequence of shape [B, K, S] to the original alignment
|
35 |
-
of codebooks across timesteps to an output tensor of shape [B, K, T], using again a special token and a mask
|
36 |
-
to fill and specify invalid positions if needed.
|
37 |
-
See the dedicated methods for more details.
|
38 |
-
"""
|
39 |
-
# Pattern layout, for each sequence step, we have a list of coordinates
|
40 |
-
# corresponding to the original codebook timestep and position.
|
41 |
-
# The first list is always an empty list in order to properly insert
|
42 |
-
# a special token to start with.
|
43 |
-
layout: PatternLayout
|
44 |
-
timesteps: int
|
45 |
-
n_q: int
|
46 |
-
|
47 |
-
def __post_init__(self):
|
48 |
-
assert len(self.layout) > 0
|
49 |
-
self._validate_layout()
|
50 |
-
self._build_reverted_sequence_scatter_indexes = lru_cache(100)(self._build_reverted_sequence_scatter_indexes)
|
51 |
-
self._build_pattern_sequence_scatter_indexes = lru_cache(100)(self._build_pattern_sequence_scatter_indexes)
|
52 |
-
logger.info("New pattern, time steps: %d, sequence steps: %d", self.timesteps, len(self.layout))
|
53 |
-
|
54 |
-
def _validate_layout(self):
|
55 |
-
"""Runs checks on the layout to ensure a valid pattern is defined.
|
56 |
-
A pattern is considered invalid if:
|
57 |
-
- Multiple timesteps for a same codebook are defined in the same sequence step
|
58 |
-
- The timesteps for a given codebook are not in ascending order as we advance in the sequence
|
59 |
-
(this would mean that we have future timesteps before past timesteps).
|
60 |
-
"""
|
61 |
-
q_timesteps = {q: 0 for q in range(self.n_q)}
|
62 |
-
for s, seq_coords in enumerate(self.layout):
|
63 |
-
if len(seq_coords) > 0:
|
64 |
-
qs = set()
|
65 |
-
for coord in seq_coords:
|
66 |
-
qs.add(coord.q)
|
67 |
-
last_q_timestep = q_timesteps[coord.q]
|
68 |
-
assert coord.t >= last_q_timestep, \
|
69 |
-
f"Past timesteps are found in the sequence for codebook = {coord.q} at step {s}"
|
70 |
-
q_timesteps[coord.q] = coord.t
|
71 |
-
# each sequence step contains at max 1 coordinate per codebook
|
72 |
-
assert len(qs) == len(seq_coords), \
|
73 |
-
f"Multiple entries for a same codebook are found at step {s}"
|
74 |
-
|
75 |
-
@property
|
76 |
-
def num_sequence_steps(self):
|
77 |
-
return len(self.layout) - 1
|
78 |
-
|
79 |
-
@property
|
80 |
-
def max_delay(self):
|
81 |
-
max_t_in_seq_coords = 0
|
82 |
-
for seq_coords in self.layout[1:]:
|
83 |
-
for coords in seq_coords:
|
84 |
-
max_t_in_seq_coords = max(max_t_in_seq_coords, coords.t + 1)
|
85 |
-
return max_t_in_seq_coords - self.timesteps
|
86 |
-
|
87 |
-
@property
|
88 |
-
def valid_layout(self):
|
89 |
-
valid_step = len(self.layout) - self.max_delay
|
90 |
-
return self.layout[:valid_step]
|
91 |
-
|
92 |
-
def starts_with_special_token(self):
|
93 |
-
return self.layout[0] == []
|
94 |
-
|
95 |
-
def get_sequence_coords_with_timestep(self, t: int, q: tp.Optional[int] = None):
|
96 |
-
"""Get codebook coordinates in the layout that corresponds to the specified timestep t
|
97 |
-
and optionally to the codebook q. Coordinates are returned as a tuple with the sequence step
|
98 |
-
and the actual codebook coordinates.
|
99 |
-
"""
|
100 |
-
assert t <= self.timesteps, "provided timesteps is greater than the pattern's number of timesteps"
|
101 |
-
if q is not None:
|
102 |
-
assert q <= self.n_q, "provided number of codebooks is greater than the pattern's number of codebooks"
|
103 |
-
coords = []
|
104 |
-
for s, seq_codes in enumerate(self.layout):
|
105 |
-
for code in seq_codes:
|
106 |
-
if code.t == t and (q is None or code.q == q):
|
107 |
-
coords.append((s, code))
|
108 |
-
return coords
|
109 |
-
|
110 |
-
def get_steps_with_timestep(self, t: int, q: tp.Optional[int] = None) -> tp.List[int]:
|
111 |
-
return [step for step, coords in self.get_sequence_coords_with_timestep(t, q)]
|
112 |
-
|
113 |
-
def get_first_step_with_timesteps(self, t: int, q: tp.Optional[int] = None) -> tp.Optional[int]:
|
114 |
-
steps_with_timesteps = self.get_steps_with_timestep(t, q)
|
115 |
-
return steps_with_timesteps[0] if len(steps_with_timesteps) > 0 else None
|
116 |
-
|
117 |
-
def _build_pattern_sequence_scatter_indexes(self, timesteps: int, n_q: int, keep_only_valid_steps: bool,
|
118 |
-
device: tp.Union[torch.device, str] = 'cpu'):
|
119 |
-
"""Build scatter indexes corresponding to the pattern, up to the provided sequence_steps.
|
120 |
-
|
121 |
-
Args:
|
122 |
-
timesteps (int): Maximum number of timesteps steps to consider.
|
123 |
-
keep_only_valid_steps (bool): Restrict the pattern layout to match only valid steps.
|
124 |
-
device (torch.device or str): Device for created tensors.
|
125 |
-
Returns:
|
126 |
-
indexes (torch.Tensor): Indexes corresponding to the sequence, of shape [K, S].
|
127 |
-
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes, of shape [K, S].
|
128 |
-
"""
|
129 |
-
assert n_q == self.n_q, f"invalid number of codebooks for the sequence and the pattern: {n_q} != {self.n_q}"
|
130 |
-
assert timesteps <= self.timesteps, "invalid number of timesteps used to build the sequence from the pattern"
|
131 |
-
# use the proper layout based on whether we limit ourselves to valid steps only or not,
|
132 |
-
# note that using the valid_layout will result in a truncated sequence up to the valid steps
|
133 |
-
ref_layout = self.valid_layout if keep_only_valid_steps else self.layout
|
134 |
-
# single item indexing being super slow with pytorch vs. numpy, so we use numpy here
|
135 |
-
indexes = torch.zeros(n_q, len(ref_layout), dtype=torch.long).numpy()
|
136 |
-
mask = torch.zeros(n_q, len(ref_layout), dtype=torch.bool).numpy()
|
137 |
-
# fill indexes with last sequence step value that will correspond to our special token
|
138 |
-
# the last value is n_q * timesteps as we have flattened z and append special token as the last token
|
139 |
-
# which will correspond to the index: n_q * timesteps
|
140 |
-
indexes[:] = n_q * timesteps
|
141 |
-
# iterate over the pattern and fill scattered indexes and mask
|
142 |
-
for s, sequence_coords in enumerate(ref_layout):
|
143 |
-
for coords in sequence_coords:
|
144 |
-
if coords.t < timesteps:
|
145 |
-
indexes[coords.q, s] = coords.t + coords.q * timesteps
|
146 |
-
mask[coords.q, s] = 1
|
147 |
-
indexes = torch.from_numpy(indexes).to(device)
|
148 |
-
mask = torch.from_numpy(mask).to(device)
|
149 |
-
return indexes, mask
|
150 |
-
|
151 |
-
def build_pattern_sequence(self, z: torch.Tensor, special_token: int, keep_only_valid_steps: bool = False):
|
152 |
-
"""Build sequence corresponding to the pattern from the input tensor z.
|
153 |
-
The sequence is built using up to sequence_steps if specified, and non-pattern
|
154 |
-
coordinates are filled with the special token.
|
155 |
-
|
156 |
-
Args:
|
157 |
-
z (torch.Tensor): Input tensor of multi-codebooks sequence, of shape [B, K, T].
|
158 |
-
special_token (int): Special token used to fill non-pattern coordinates in the new sequence.
|
159 |
-
keep_only_valid_steps (bool): Build a sequence from the pattern up to valid (= fully defined) steps.
|
160 |
-
Steps that are beyond valid steps will be replaced by the special_token in that case.
|
161 |
-
Returns:
|
162 |
-
values (torch.Tensor): Interleaved sequence matching the pattern, of shape [B, K, S] with S
|
163 |
-
corresponding either to the sequence_steps if provided, otherwise to the length of the pattern.
|
164 |
-
indexes (torch.Tensor): Indexes corresponding to the interleaved sequence, of shape [K, S].
|
165 |
-
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes of shape [K, S].
|
166 |
-
"""
|
167 |
-
B, K, T = z.shape
|
168 |
-
indexes, mask = self._build_pattern_sequence_scatter_indexes(
|
169 |
-
T, K, keep_only_valid_steps=keep_only_valid_steps, device=str(z.device)
|
170 |
-
)
|
171 |
-
z = z.view(B, -1)
|
172 |
-
# we append the special token as the last index of our flattened z tensor
|
173 |
-
z = torch.cat([z, torch.zeros_like(z[:, :1]) + special_token], dim=1)
|
174 |
-
values = z[:, indexes.view(-1)]
|
175 |
-
values = values.view(B, K, indexes.shape[-1])
|
176 |
-
return values, indexes, mask
|
177 |
-
|
178 |
-
def _build_reverted_sequence_scatter_indexes(self, sequence_steps: int, n_q: int,
|
179 |
-
keep_only_valid_steps: bool = False,
|
180 |
-
is_model_output: bool = False,
|
181 |
-
device: tp.Union[torch.device, str] = 'cpu'):
|
182 |
-
"""Builds scatter indexes required to retrieve the original multi-codebook sequence
|
183 |
-
from interleaving pattern.
|
184 |
-
|
185 |
-
Args:
|
186 |
-
sequence_steps (int): Sequence steps.
|
187 |
-
n_q (int): Number of codebooks.
|
188 |
-
keep_only_valid_steps (bool): Build a sequence from the pattern up to valid (= fully defined) steps.
|
189 |
-
Steps that are beyond valid steps will be replaced by the special_token in that case.
|
190 |
-
is_model_output (bool): Whether to keep the sequence item corresponding to initial special token or not.
|
191 |
-
device (torch.device or str): Device for created tensors.
|
192 |
-
Returns:
|
193 |
-
indexes (torch.Tensor): Indexes for reconstructing the output, of shape [K, T].
|
194 |
-
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes of shape [K, T].
|
195 |
-
"""
|
196 |
-
ref_layout = self.valid_layout if keep_only_valid_steps else self.layout
|
197 |
-
# TODO(jade): Do we want to further truncate to only valid timesteps here as well?
|
198 |
-
timesteps = self.timesteps
|
199 |
-
assert n_q == self.n_q, f"invalid number of codebooks for the sequence and the pattern: {n_q} != {self.n_q}"
|
200 |
-
assert sequence_steps <= len(ref_layout), \
|
201 |
-
f"sequence to revert is longer than the defined pattern: {sequence_steps} > {len(ref_layout)}"
|
202 |
-
|
203 |
-
# ensure we take the appropriate indexes to keep the model output from the first special token as well
|
204 |
-
if is_model_output and self.starts_with_special_token():
|
205 |
-
ref_layout = ref_layout[1:]
|
206 |
-
|
207 |
-
# single item indexing being super slow with pytorch vs. numpy, so we use numpy here
|
208 |
-
indexes = torch.zeros(n_q, timesteps, dtype=torch.long).numpy()
|
209 |
-
mask = torch.zeros(n_q, timesteps, dtype=torch.bool).numpy()
|
210 |
-
# fill indexes with last sequence step value that will correspond to our special token
|
211 |
-
indexes[:] = n_q * sequence_steps
|
212 |
-
for s, sequence_codes in enumerate(ref_layout):
|
213 |
-
if s < sequence_steps:
|
214 |
-
for code in sequence_codes:
|
215 |
-
if code.t < timesteps:
|
216 |
-
indexes[code.q, code.t] = s + code.q * sequence_steps
|
217 |
-
mask[code.q, code.t] = 1
|
218 |
-
indexes = torch.from_numpy(indexes).to(device)
|
219 |
-
mask = torch.from_numpy(mask).to(device)
|
220 |
-
return indexes, mask
|
221 |
-
|
222 |
-
def revert_pattern_sequence(self, s: torch.Tensor, special_token: int, keep_only_valid_steps: bool = False):
|
223 |
-
"""Revert a sequence built from the pattern back to the original multi-codebook sequence without interleaving.
|
224 |
-
The sequence is reverted using up to timesteps if specified, and non-pattern coordinates
|
225 |
-
are filled with the special token.
|
226 |
-
|
227 |
-
Args:
|
228 |
-
s (torch.Tensor): Interleaved sequence tensor obtained from the pattern, of shape [B, K, S].
|
229 |
-
special_token (int or float): Special token used to fill non-pattern coordinates in the new sequence.
|
230 |
-
Returns:
|
231 |
-
values (torch.Tensor): Interleaved sequence matching the pattern, of shape [B, K, T] with T
|
232 |
-
corresponding either to the timesteps if provided, or the total timesteps in pattern otherwise.
|
233 |
-
indexes (torch.Tensor): Indexes corresponding to the interleaved sequence, of shape [K, T].
|
234 |
-
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes of shape [K, T].
|
235 |
-
"""
|
236 |
-
B, K, S = s.shape
|
237 |
-
indexes, mask = self._build_reverted_sequence_scatter_indexes(
|
238 |
-
S, K, keep_only_valid_steps, is_model_output=False, device=str(s.device)
|
239 |
-
)
|
240 |
-
s = s.view(B, -1)
|
241 |
-
# we append the special token as the last index of our flattened z tensor
|
242 |
-
s = torch.cat([s, torch.zeros_like(s[:, :1]) + special_token], dim=1)
|
243 |
-
values = s[:, indexes.view(-1)]
|
244 |
-
values = values.view(B, K, indexes.shape[-1])
|
245 |
-
return values, indexes, mask
|
246 |
-
|
247 |
-
def revert_pattern_logits(self, logits: torch.Tensor, special_token: float, keep_only_valid_steps: bool = False):
|
248 |
-
"""Revert model logits obtained on a sequence built from the pattern
|
249 |
-
back to a tensor matching the original sequence.
|
250 |
-
|
251 |
-
This method is similar to ``revert_pattern_sequence`` with the following specificities:
|
252 |
-
1. It is designed to work with the extra cardinality dimension
|
253 |
-
2. We return the logits for the first sequence item that matches the special_token and
|
254 |
-
which matching target in the original sequence is the first item of the sequence,
|
255 |
-
while we skip the last logits as there is no matching target
|
256 |
-
"""
|
257 |
-
B, card, K, S = logits.shape
|
258 |
-
indexes, mask = self._build_reverted_sequence_scatter_indexes(
|
259 |
-
S, K, keep_only_valid_steps, is_model_output=True, device=logits.device
|
260 |
-
)
|
261 |
-
logits = logits.reshape(B, card, -1)
|
262 |
-
# we append the special token as the last index of our flattened z tensor
|
263 |
-
logits = torch.cat([logits, torch.zeros_like(logits[:, :, :1]) + special_token], dim=-1) # [B, card, K x S]
|
264 |
-
values = logits[:, :, indexes.view(-1)]
|
265 |
-
values = values.view(B, card, K, indexes.shape[-1])
|
266 |
-
return values, indexes, mask
|
267 |
-
|
268 |
-
|
269 |
-
class CodebooksPatternProvider(ABC):
|
270 |
-
"""Abstraction around providing pattern for interleaving codebooks.
|
271 |
-
|
272 |
-
The CodebooksPatternProvider abstraction allows to implement various strategies to
|
273 |
-
define interleaving pattern of sequences composed of multiple codebooks. For a given
|
274 |
-
number of codebooks `n_q`, the pattern provider can generate a specified pattern
|
275 |
-
corresponding to a sequence of `T` timesteps with `n_q` parallel codebooks. This pattern
|
276 |
-
can be used to construct a new sequence from the original codes respecting the specified
|
277 |
-
pattern. The pattern is defined as a list of list of code coordinates, code coordinate
|
278 |
-
being a tuple with the original timestep and codebook to build the new sequence.
|
279 |
-
Note that all patterns must start with an empty list that is then used to insert a first
|
280 |
-
sequence step of special tokens in the newly generated sequence.
|
281 |
-
|
282 |
-
Args:
|
283 |
-
n_q (int): number of codebooks.
|
284 |
-
cached (bool): if True, patterns for a given length are cached. In general
|
285 |
-
that should be true for efficiency reason to avoid synchronization points.
|
286 |
-
"""
|
287 |
-
def __init__(self, n_q: int, cached: bool = True):
|
288 |
-
assert n_q > 0
|
289 |
-
self.n_q = n_q
|
290 |
-
self.get_pattern = lru_cache(100)(self.get_pattern) # type: ignore
|
291 |
-
|
292 |
-
@abstractmethod
|
293 |
-
def get_pattern(self, timesteps: int) -> Pattern:
|
294 |
-
"""Builds pattern with specific interleaving between codebooks.
|
295 |
-
|
296 |
-
Args:
|
297 |
-
timesteps (int): Total number of timesteps.
|
298 |
-
"""
|
299 |
-
raise NotImplementedError()
|
300 |
-
|
301 |
-
|
302 |
-
class DelayedPatternProvider(CodebooksPatternProvider):
|
303 |
-
"""Provider for delayed pattern across delayed codebooks.
|
304 |
-
Codebooks are delayed in the sequence and sequence steps will contain codebooks
|
305 |
-
from different timesteps.
|
306 |
-
|
307 |
-
Example:
|
308 |
-
Taking timesteps=4 and n_q=3, delays=None, the multi-codebook sequence:
|
309 |
-
[[1, 2, 3, 4],
|
310 |
-
[1, 2, 3, 4],
|
311 |
-
[1, 2, 3, 4]]
|
312 |
-
The resulting sequence obtained from the returned pattern is:
|
313 |
-
[[S, 1, 2, 3, 4],
|
314 |
-
[S, S, 1, 2, 3],
|
315 |
-
[S, S, S, 1, 2]]
|
316 |
-
(with S being a special token)
|
317 |
-
|
318 |
-
Args:
|
319 |
-
n_q (int): Number of codebooks.
|
320 |
-
delays (list of int, optional): Delay for each of the codebooks.
|
321 |
-
If delays not defined, each codebook is delayed by 1 compared to the previous one.
|
322 |
-
flatten_first (int): Flatten the first N timesteps.
|
323 |
-
empty_initial (int): Prepend with N empty list of coordinates.
|
324 |
-
"""
|
325 |
-
def __init__(self, n_q: int, delays: tp.Optional[tp.List[int]] = None,
|
326 |
-
flatten_first: int = 0, empty_initial: int = 0):
|
327 |
-
super().__init__(n_q)
|
328 |
-
if delays is None:
|
329 |
-
delays = list(range(n_q))
|
330 |
-
self.delays = delays
|
331 |
-
self.flatten_first = flatten_first
|
332 |
-
self.empty_initial = empty_initial
|
333 |
-
assert len(self.delays) == self.n_q
|
334 |
-
assert sorted(self.delays) == self.delays
|
335 |
-
|
336 |
-
def get_pattern(self, timesteps: int) -> Pattern:
|
337 |
-
omit_special_token = self.empty_initial < 0
|
338 |
-
out: PatternLayout = [] if omit_special_token else [[]]
|
339 |
-
max_delay = max(self.delays)
|
340 |
-
if self.empty_initial:
|
341 |
-
out += [[] for _ in range(self.empty_initial)]
|
342 |
-
if self.flatten_first:
|
343 |
-
for t in range(min(timesteps, self.flatten_first)):
|
344 |
-
for q in range(self.n_q):
|
345 |
-
out.append([LayoutCoord(t, q)])
|
346 |
-
for t in range(self.flatten_first, timesteps + max_delay):
|
347 |
-
v = []
|
348 |
-
for q, delay in enumerate(self.delays):
|
349 |
-
t_for_q = t - delay
|
350 |
-
if t_for_q >= self.flatten_first:
|
351 |
-
v.append(LayoutCoord(t_for_q, q))
|
352 |
-
out.append(v)
|
353 |
-
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
354 |
-
|
355 |
-
|
356 |
-
class ParallelPatternProvider(DelayedPatternProvider):
|
357 |
-
"""Provider for parallel pattern across codebooks.
|
358 |
-
This pattern provider is a special case of the delayed pattern with actually no delay,
|
359 |
-
hence delays=repeat(0, n_q).
|
360 |
-
|
361 |
-
Args:
|
362 |
-
n_q (int): Number of codebooks.
|
363 |
-
empty_initial (int): Prepend with N empty list of coordinates.
|
364 |
-
"""
|
365 |
-
def __init__(self, n_q: int, empty_initial: int = 0):
|
366 |
-
super().__init__(n_q, [0] * n_q, empty_initial=empty_initial)
|
367 |
-
|
368 |
-
|
369 |
-
class UnrolledPatternProvider(CodebooksPatternProvider):
|
370 |
-
"""Provider for unrolling codebooks pattern.
|
371 |
-
This pattern provider enables to represent the codebook flattened completely or only to some extend
|
372 |
-
while also specifying a given delay between the flattened codebooks representation, allowing to
|
373 |
-
unroll the codebooks in the sequence.
|
374 |
-
|
375 |
-
Example:
|
376 |
-
1. Flattening of the codebooks.
|
377 |
-
By default, the pattern provider will fully flatten the codebooks such as flattening=range(n_q),
|
378 |
-
taking n_q = 3 and timesteps = 4:
|
379 |
-
[[1, 2, 3, 4],
|
380 |
-
[1, 2, 3, 4],
|
381 |
-
[1, 2, 3, 4]]
|
382 |
-
will result into:
|
383 |
-
[[S, S, 1, S, S, 2, S, S, 3, S, S, 4],
|
384 |
-
[S, 1, S, S, 2, S, S, 3, S, S, 4, S],
|
385 |
-
[1, S, S, 2, S, S, 3, S, S, 4, S, S]]
|
386 |
-
2. Partial flattening of the codebooks. The ``flattening`` parameter allows to specify the inner step
|
387 |
-
for each of the codebook, allowing to define which codebook to flatten (or keep in parallel), for example
|
388 |
-
taking n_q = 3, timesteps = 4 and flattening = [0, 1, 1]:
|
389 |
-
[[1, 2, 3, 4],
|
390 |
-
[1, 2, 3, 4],
|
391 |
-
[1, 2, 3, 4]]
|
392 |
-
will result into:
|
393 |
-
[[S, 1, S, S, 2, S, S, 3, S, S, 4, S],
|
394 |
-
[S, 1, S, S, 2, S, S, 3, S, S, 4, S],
|
395 |
-
[1, S, S, 2, S, S, 3, S, S, 4, S, S]]
|
396 |
-
3. Flattening with delay. The ``delay`` parameter allows to further unroll the sequence of codebooks
|
397 |
-
allowing to specify the delay per codebook. Note that the delay between codebooks flattened to the
|
398 |
-
same inner timestep should be coherent. For example, taking n_q = 3, timesteps = 4, flattening = [0, 1, 1]
|
399 |
-
and delays = [0, 3, 3]:
|
400 |
-
[[1, 2, 3, 4],
|
401 |
-
[1, 2, 3, 4],
|
402 |
-
[1, 2, 3, 4]]
|
403 |
-
will result into:
|
404 |
-
[[S, S, S, 1, S, 2, S, 3, S, 4],
|
405 |
-
[S, S, S, 1, S, 2, S, 3, S, 4],
|
406 |
-
[1, 2, 3, S, 4, S, 5, S, 6, S]]
|
407 |
-
|
408 |
-
Args:
|
409 |
-
n_q (int): Number of codebooks.
|
410 |
-
flattening (list of int, optional): Flattening schema over the codebooks. If not defined,
|
411 |
-
the codebooks will be flattened to 1 codebook per step, meaning that the sequence will
|
412 |
-
have n_q extra steps for each timestep.
|
413 |
-
delays (list of int, optional): Delay for each of the codebooks. If not defined,
|
414 |
-
no delay is added and therefore will default to [0] * ``n_q``.
|
415 |
-
Note that two codebooks that will be flattened to the same inner step
|
416 |
-
should have the same delay, otherwise the pattern is considered as invalid.
|
417 |
-
"""
|
418 |
-
FlattenedCodebook = namedtuple('FlattenedCodebook', ['codebooks', 'delay'])
|
419 |
-
|
420 |
-
def __init__(self, n_q: int, flattening: tp.Optional[tp.List[int]] = None,
|
421 |
-
delays: tp.Optional[tp.List[int]] = None):
|
422 |
-
super().__init__(n_q)
|
423 |
-
if flattening is None:
|
424 |
-
flattening = list(range(n_q))
|
425 |
-
if delays is None:
|
426 |
-
delays = [0] * n_q
|
427 |
-
assert len(flattening) == n_q
|
428 |
-
assert len(delays) == n_q
|
429 |
-
assert sorted(flattening) == flattening
|
430 |
-
assert sorted(delays) == delays
|
431 |
-
self._flattened_codebooks = self._build_flattened_codebooks(delays, flattening)
|
432 |
-
self.max_delay = max(delays)
|
433 |
-
|
434 |
-
def _build_flattened_codebooks(self, delays: tp.List[int], flattening: tp.List[int]):
|
435 |
-
"""Build a flattened codebooks representation as a dictionary of inner step
|
436 |
-
and the actual codebook indices corresponding to the flattened codebook. For convenience, we
|
437 |
-
also store the delay associated to the flattened codebook to avoid maintaining an extra mapping.
|
438 |
-
"""
|
439 |
-
flattened_codebooks: dict = {}
|
440 |
-
for q, (inner_step, delay) in enumerate(zip(flattening, delays)):
|
441 |
-
if inner_step not in flattened_codebooks:
|
442 |
-
flat_codebook = UnrolledPatternProvider.FlattenedCodebook(codebooks=[q], delay=delay)
|
443 |
-
else:
|
444 |
-
flat_codebook = flattened_codebooks[inner_step]
|
445 |
-
assert flat_codebook.delay == delay, (
|
446 |
-
"Delay and flattening between codebooks is inconsistent: ",
|
447 |
-
"two codebooks flattened to the same position should have the same delay."
|
448 |
-
)
|
449 |
-
flat_codebook.codebooks.append(q)
|
450 |
-
flattened_codebooks[inner_step] = flat_codebook
|
451 |
-
return flattened_codebooks
|
452 |
-
|
453 |
-
@property
|
454 |
-
def _num_inner_steps(self):
|
455 |
-
"""Number of inner steps to unroll between timesteps in order to flatten the codebooks.
|
456 |
-
"""
|
457 |
-
return max([inner_step for inner_step in self._flattened_codebooks.keys()]) + 1
|
458 |
-
|
459 |
-
def num_virtual_steps(self, timesteps: int) -> int:
|
460 |
-
return timesteps * self._num_inner_steps + 1
|
461 |
-
|
462 |
-
def get_pattern(self, timesteps: int) -> Pattern:
|
463 |
-
"""Builds pattern for delay across codebooks.
|
464 |
-
|
465 |
-
Args:
|
466 |
-
timesteps (int): Total number of timesteps.
|
467 |
-
"""
|
468 |
-
# the PatternLayout is built as a tuple of sequence position and list of coordinates
|
469 |
-
# so that it can be reordered properly given the required delay between codebooks of given timesteps
|
470 |
-
indexed_out: list = [(-1, [])]
|
471 |
-
max_timesteps = timesteps + self.max_delay
|
472 |
-
for t in range(max_timesteps):
|
473 |
-
# for each timestep, we unroll the flattened codebooks,
|
474 |
-
# emitting the sequence step with the corresponding delay
|
475 |
-
for step in range(self._num_inner_steps):
|
476 |
-
if step in self._flattened_codebooks:
|
477 |
-
# we have codebooks at this virtual step to emit
|
478 |
-
step_codebooks = self._flattened_codebooks[step]
|
479 |
-
t_for_q = t + step_codebooks.delay
|
480 |
-
coords = [LayoutCoord(t, q) for q in step_codebooks.codebooks]
|
481 |
-
if t_for_q < max_timesteps and t < max_timesteps:
|
482 |
-
indexed_out.append((t_for_q, coords))
|
483 |
-
else:
|
484 |
-
# there is no codebook in this virtual step so we emit an empty list
|
485 |
-
indexed_out.append((t, []))
|
486 |
-
out = [coords for _, coords in sorted(indexed_out)]
|
487 |
-
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
488 |
-
|
489 |
-
|
490 |
-
class CoarseFirstPattern(CodebooksPatternProvider):
|
491 |
-
"""First generates all the codebooks #1 (e.g. coarser), then the remaining ones,
|
492 |
-
potentially with delays.
|
493 |
-
|
494 |
-
..Warning:: You must always generate the full training duration at test time, for instance,
|
495 |
-
30 seconds, as otherwise, the fine codebooks will start being generated in an unexpected
|
496 |
-
location. This is due to the non causality of the remaining codebooks with respect to
|
497 |
-
the first ones.
|
498 |
-
|
499 |
-
Args:
|
500 |
-
n_q (int): Number of codebooks.
|
501 |
-
delays (list of int, optional): Delay for each of the codebooks.
|
502 |
-
If delays not defined, each codebook is delayed by 1 compared to the previous one.
|
503 |
-
"""
|
504 |
-
def __init__(self, n_q: int, delays: tp.Optional[tp.List[int]] = None):
|
505 |
-
super().__init__(n_q)
|
506 |
-
if delays is None:
|
507 |
-
delays = [0] * (n_q - 1)
|
508 |
-
self.delays = delays
|
509 |
-
assert len(self.delays) == self.n_q - 1
|
510 |
-
assert sorted(self.delays) == self.delays
|
511 |
-
|
512 |
-
def get_pattern(self, timesteps: int) -> Pattern:
|
513 |
-
out: PatternLayout = [[]]
|
514 |
-
for t in range(timesteps):
|
515 |
-
out.append([LayoutCoord(t, 0)])
|
516 |
-
max_delay = max(self.delays)
|
517 |
-
for t in range(timesteps + max_delay):
|
518 |
-
v = []
|
519 |
-
for q, delay in enumerate(self.delays):
|
520 |
-
t_for_q = t - delay
|
521 |
-
if t_for_q >= 0:
|
522 |
-
v.append(LayoutCoord(t_for_q, q + 1))
|
523 |
-
out.append(v)
|
524 |
-
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
525 |
-
|
526 |
-
|
527 |
-
class MusicLMPattern(CodebooksPatternProvider):
|
528 |
-
"""Almost MusicLM style pattern. This is equivalent to full flattening
|
529 |
-
but in a different order.
|
530 |
-
|
531 |
-
Args:
|
532 |
-
n_q (int): Number of codebooks.
|
533 |
-
group_by (int): Number of codebooks to group together.
|
534 |
-
"""
|
535 |
-
def __init__(self, n_q: int, group_by: int = 2):
|
536 |
-
super().__init__(n_q)
|
537 |
-
self.group_by = group_by
|
538 |
-
|
539 |
-
def get_pattern(self, timesteps: int) -> Pattern:
|
540 |
-
out: PatternLayout = [[]]
|
541 |
-
for offset in range(0, self.n_q, self.group_by):
|
542 |
-
for t in range(timesteps):
|
543 |
-
for q in range(offset, offset + self.group_by):
|
544 |
-
out.append([LayoutCoord(t, q)])
|
545 |
-
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/conditioners.py
DELETED
@@ -1,561 +0,0 @@
|
|
1 |
-
#Heavily influenced by https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/conditioners.py
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import logging, warnings
|
5 |
-
import string
|
6 |
-
import typing as tp
|
7 |
-
import gc
|
8 |
-
|
9 |
-
from .adp import NumberEmbedder
|
10 |
-
from ..inference.utils import set_audio_channels
|
11 |
-
from .factory import create_pretransform_from_config
|
12 |
-
from .pretransforms import Pretransform
|
13 |
-
from ..training.utils import copy_state_dict
|
14 |
-
from .utils import load_ckpt_state_dict
|
15 |
-
|
16 |
-
from torch import nn
|
17 |
-
|
18 |
-
class Conditioner(nn.Module):
|
19 |
-
def __init__(
|
20 |
-
self,
|
21 |
-
dim: int,
|
22 |
-
output_dim: int,
|
23 |
-
project_out: bool = False
|
24 |
-
):
|
25 |
-
|
26 |
-
super().__init__()
|
27 |
-
|
28 |
-
self.dim = dim
|
29 |
-
self.output_dim = output_dim
|
30 |
-
self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
|
31 |
-
|
32 |
-
def forward(self, x: tp.Any) -> tp.Any:
|
33 |
-
raise NotImplementedError()
|
34 |
-
|
35 |
-
class IntConditioner(Conditioner):
|
36 |
-
def __init__(self,
|
37 |
-
output_dim: int,
|
38 |
-
min_val: int=0,
|
39 |
-
max_val: int=512
|
40 |
-
):
|
41 |
-
super().__init__(output_dim, output_dim)
|
42 |
-
|
43 |
-
self.min_val = min_val
|
44 |
-
self.max_val = max_val
|
45 |
-
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True)
|
46 |
-
|
47 |
-
def forward(self, ints: tp.List[int], device=None) -> tp.Any:
|
48 |
-
|
49 |
-
#self.int_embedder.to(device)
|
50 |
-
|
51 |
-
ints = torch.tensor(ints).to(device)
|
52 |
-
ints = ints.clamp(self.min_val, self.max_val)
|
53 |
-
|
54 |
-
int_embeds = self.int_embedder(ints).unsqueeze(1)
|
55 |
-
|
56 |
-
return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)]
|
57 |
-
|
58 |
-
class NumberConditioner(Conditioner):
|
59 |
-
'''
|
60 |
-
Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
|
61 |
-
'''
|
62 |
-
def __init__(self,
|
63 |
-
output_dim: int,
|
64 |
-
min_val: float=0,
|
65 |
-
max_val: float=1
|
66 |
-
):
|
67 |
-
super().__init__(output_dim, output_dim)
|
68 |
-
|
69 |
-
self.min_val = min_val
|
70 |
-
self.max_val = max_val
|
71 |
-
|
72 |
-
self.embedder = NumberEmbedder(features=output_dim)
|
73 |
-
|
74 |
-
def forward(self, floats: tp.List[float], device=None) -> tp.Any:
|
75 |
-
|
76 |
-
# Cast the inputs to floats
|
77 |
-
floats = [float(x) for x in floats]
|
78 |
-
|
79 |
-
floats = torch.tensor(floats).to(device)
|
80 |
-
|
81 |
-
floats = floats.clamp(self.min_val, self.max_val)
|
82 |
-
|
83 |
-
normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
|
84 |
-
|
85 |
-
# Cast floats to same type as embedder
|
86 |
-
embedder_dtype = next(self.embedder.parameters()).dtype
|
87 |
-
normalized_floats = normalized_floats.to(embedder_dtype)
|
88 |
-
|
89 |
-
float_embeds = self.embedder(normalized_floats).unsqueeze(1)
|
90 |
-
|
91 |
-
return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
|
92 |
-
|
93 |
-
class CLAPTextConditioner(Conditioner):
|
94 |
-
def __init__(self,
|
95 |
-
output_dim: int,
|
96 |
-
clap_ckpt_path,
|
97 |
-
use_text_features = False,
|
98 |
-
feature_layer_ix: int = -1,
|
99 |
-
audio_model_type="HTSAT-base",
|
100 |
-
enable_fusion=True,
|
101 |
-
project_out: bool = False,
|
102 |
-
finetune: bool = False):
|
103 |
-
super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out)
|
104 |
-
|
105 |
-
self.use_text_features = use_text_features
|
106 |
-
self.feature_layer_ix = feature_layer_ix
|
107 |
-
self.finetune = finetune
|
108 |
-
|
109 |
-
# Suppress logging from transformers
|
110 |
-
previous_level = logging.root.manager.disable
|
111 |
-
logging.disable(logging.ERROR)
|
112 |
-
with warnings.catch_warnings():
|
113 |
-
warnings.simplefilter("ignore")
|
114 |
-
try:
|
115 |
-
import laion_clap
|
116 |
-
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
|
117 |
-
|
118 |
-
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
|
119 |
-
|
120 |
-
if self.finetune:
|
121 |
-
self.model = model
|
122 |
-
else:
|
123 |
-
self.__dict__["model"] = model
|
124 |
-
|
125 |
-
state_dict = clap_load_state_dict(clap_ckpt_path)
|
126 |
-
self.model.model.load_state_dict(state_dict, strict=False)
|
127 |
-
|
128 |
-
if self.finetune:
|
129 |
-
self.model.model.text_branch.requires_grad_(True)
|
130 |
-
self.model.model.text_branch.train()
|
131 |
-
else:
|
132 |
-
self.model.model.text_branch.requires_grad_(False)
|
133 |
-
self.model.model.text_branch.eval()
|
134 |
-
|
135 |
-
finally:
|
136 |
-
logging.disable(previous_level)
|
137 |
-
|
138 |
-
del self.model.model.audio_branch
|
139 |
-
|
140 |
-
gc.collect()
|
141 |
-
torch.cuda.empty_cache()
|
142 |
-
|
143 |
-
def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"):
|
144 |
-
prompt_tokens = self.model.tokenizer(prompts)
|
145 |
-
attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True)
|
146 |
-
prompt_features = self.model.model.text_branch(
|
147 |
-
input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True),
|
148 |
-
attention_mask=attention_mask,
|
149 |
-
output_hidden_states=True
|
150 |
-
)["hidden_states"][layer_ix]
|
151 |
-
|
152 |
-
return prompt_features, attention_mask
|
153 |
-
|
154 |
-
def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any:
|
155 |
-
self.model.to(device)
|
156 |
-
|
157 |
-
if self.use_text_features:
|
158 |
-
if len(texts) == 1:
|
159 |
-
text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device)
|
160 |
-
text_features = text_features[:1, ...]
|
161 |
-
text_attention_mask = text_attention_mask[:1, ...]
|
162 |
-
else:
|
163 |
-
text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device)
|
164 |
-
return [self.proj_out(text_features), text_attention_mask]
|
165 |
-
|
166 |
-
# Fix for CLAP bug when only one text is passed
|
167 |
-
if len(texts) == 1:
|
168 |
-
text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...]
|
169 |
-
else:
|
170 |
-
text_embedding = self.model.get_text_embedding(texts, use_tensor=True)
|
171 |
-
|
172 |
-
text_embedding = text_embedding.unsqueeze(1).to(device)
|
173 |
-
|
174 |
-
return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)]
|
175 |
-
|
176 |
-
class CLAPAudioConditioner(Conditioner):
|
177 |
-
def __init__(self,
|
178 |
-
output_dim: int,
|
179 |
-
clap_ckpt_path,
|
180 |
-
audio_model_type="HTSAT-base",
|
181 |
-
enable_fusion=True,
|
182 |
-
project_out: bool = False):
|
183 |
-
super().__init__(512, output_dim, project_out=project_out)
|
184 |
-
|
185 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
186 |
-
|
187 |
-
# Suppress logging from transformers
|
188 |
-
previous_level = logging.root.manager.disable
|
189 |
-
logging.disable(logging.ERROR)
|
190 |
-
with warnings.catch_warnings():
|
191 |
-
warnings.simplefilter("ignore")
|
192 |
-
try:
|
193 |
-
import laion_clap
|
194 |
-
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
|
195 |
-
|
196 |
-
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
|
197 |
-
|
198 |
-
if self.finetune:
|
199 |
-
self.model = model
|
200 |
-
else:
|
201 |
-
self.__dict__["model"] = model
|
202 |
-
|
203 |
-
state_dict = clap_load_state_dict(clap_ckpt_path)
|
204 |
-
self.model.model.load_state_dict(state_dict, strict=False)
|
205 |
-
|
206 |
-
if self.finetune:
|
207 |
-
self.model.model.audio_branch.requires_grad_(True)
|
208 |
-
self.model.model.audio_branch.train()
|
209 |
-
else:
|
210 |
-
self.model.model.audio_branch.requires_grad_(False)
|
211 |
-
self.model.model.audio_branch.eval()
|
212 |
-
|
213 |
-
finally:
|
214 |
-
logging.disable(previous_level)
|
215 |
-
|
216 |
-
del self.model.model.text_branch
|
217 |
-
|
218 |
-
gc.collect()
|
219 |
-
torch.cuda.empty_cache()
|
220 |
-
|
221 |
-
def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any:
|
222 |
-
|
223 |
-
self.model.to(device)
|
224 |
-
|
225 |
-
if isinstance(audios, list) or isinstance(audios, tuple):
|
226 |
-
audios = torch.cat(audios, dim=0)
|
227 |
-
|
228 |
-
# Convert to mono
|
229 |
-
mono_audios = audios.mean(dim=1)
|
230 |
-
|
231 |
-
with torch.cuda.amp.autocast(enabled=False):
|
232 |
-
audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True)
|
233 |
-
|
234 |
-
audio_embedding = audio_embedding.unsqueeze(1).to(device)
|
235 |
-
|
236 |
-
return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)]
|
237 |
-
|
238 |
-
class T5Conditioner(Conditioner):
|
239 |
-
|
240 |
-
T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
|
241 |
-
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
|
242 |
-
"google/flan-t5-xl", "google/flan-t5-xxl"]
|
243 |
-
|
244 |
-
T5_MODEL_DIMS = {
|
245 |
-
"t5-small": 512,
|
246 |
-
"t5-base": 768,
|
247 |
-
"t5-large": 1024,
|
248 |
-
"t5-3b": 1024,
|
249 |
-
"t5-11b": 1024,
|
250 |
-
"t5-xl": 2048,
|
251 |
-
"t5-xxl": 4096,
|
252 |
-
"google/flan-t5-small": 512,
|
253 |
-
"google/flan-t5-base": 768,
|
254 |
-
"google/flan-t5-large": 1024,
|
255 |
-
"google/flan-t5-3b": 1024,
|
256 |
-
"google/flan-t5-11b": 1024,
|
257 |
-
"google/flan-t5-xl": 2048,
|
258 |
-
"google/flan-t5-xxl": 4096,
|
259 |
-
}
|
260 |
-
|
261 |
-
def __init__(
|
262 |
-
self,
|
263 |
-
output_dim: int,
|
264 |
-
t5_model_name: str = "t5-base",
|
265 |
-
max_length: str = 128,
|
266 |
-
enable_grad: bool = False,
|
267 |
-
project_out: bool = False
|
268 |
-
):
|
269 |
-
assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}"
|
270 |
-
super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out)
|
271 |
-
|
272 |
-
from transformers import T5EncoderModel, AutoTokenizer
|
273 |
-
|
274 |
-
self.max_length = max_length
|
275 |
-
self.enable_grad = enable_grad
|
276 |
-
|
277 |
-
# Suppress logging from transformers
|
278 |
-
previous_level = logging.root.manager.disable
|
279 |
-
logging.disable(logging.ERROR)
|
280 |
-
with warnings.catch_warnings():
|
281 |
-
warnings.simplefilter("ignore")
|
282 |
-
try:
|
283 |
-
# self.tokenizer = T5Tokenizer.from_pretrained(t5_model_name, model_max_length = max_length)
|
284 |
-
# model = T5EncoderModel.from_pretrained(t5_model_name, max_length=max_length).train(enable_grad).requires_grad_(enable_grad)
|
285 |
-
self.tokenizer = AutoTokenizer.from_pretrained(t5_model_name)
|
286 |
-
model = T5EncoderModel.from_pretrained(t5_model_name).train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
|
287 |
-
finally:
|
288 |
-
logging.disable(previous_level)
|
289 |
-
|
290 |
-
if self.enable_grad:
|
291 |
-
self.model = model
|
292 |
-
else:
|
293 |
-
self.__dict__["model"] = model
|
294 |
-
|
295 |
-
|
296 |
-
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
297 |
-
|
298 |
-
self.model.to(device)
|
299 |
-
self.proj_out.to(device)
|
300 |
-
|
301 |
-
encoded = self.tokenizer(
|
302 |
-
texts,
|
303 |
-
truncation=True,
|
304 |
-
max_length=self.max_length,
|
305 |
-
padding="max_length",
|
306 |
-
return_tensors="pt",
|
307 |
-
)
|
308 |
-
|
309 |
-
input_ids = encoded["input_ids"].to(device)
|
310 |
-
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
|
311 |
-
|
312 |
-
self.model.eval()
|
313 |
-
|
314 |
-
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad):
|
315 |
-
embeddings = self.model(
|
316 |
-
input_ids=input_ids, attention_mask=attention_mask
|
317 |
-
)["last_hidden_state"]
|
318 |
-
|
319 |
-
embeddings = self.proj_out(embeddings.float())
|
320 |
-
|
321 |
-
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
|
322 |
-
|
323 |
-
return embeddings, attention_mask
|
324 |
-
|
325 |
-
class PhonemeConditioner(Conditioner):
|
326 |
-
"""
|
327 |
-
A conditioner that turns text into phonemes and embeds them using a lookup table
|
328 |
-
Only works for English text
|
329 |
-
|
330 |
-
Args:
|
331 |
-
output_dim: the dimension of the output embeddings
|
332 |
-
max_length: the maximum number of phonemes to embed
|
333 |
-
project_out: whether to add another linear projection to the output embeddings
|
334 |
-
"""
|
335 |
-
|
336 |
-
def __init__(
|
337 |
-
self,
|
338 |
-
output_dim: int,
|
339 |
-
max_length: int = 1024,
|
340 |
-
project_out: bool = False,
|
341 |
-
):
|
342 |
-
super().__init__(output_dim, output_dim, project_out=project_out)
|
343 |
-
|
344 |
-
from g2p_en import G2p
|
345 |
-
|
346 |
-
self.max_length = max_length
|
347 |
-
|
348 |
-
self.g2p = G2p()
|
349 |
-
|
350 |
-
# Reserving 0 for padding, 1 for ignored
|
351 |
-
self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim)
|
352 |
-
|
353 |
-
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
354 |
-
|
355 |
-
self.phoneme_embedder.to(device)
|
356 |
-
self.proj_out.to(device)
|
357 |
-
|
358 |
-
batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length]
|
359 |
-
|
360 |
-
phoneme_ignore = [" ", *string.punctuation]
|
361 |
-
|
362 |
-
# Remove ignored phonemes and cut to max length
|
363 |
-
batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes]
|
364 |
-
|
365 |
-
# Convert to ids
|
366 |
-
phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes]
|
367 |
-
|
368 |
-
#Pad to match longest and make a mask tensor for the padding
|
369 |
-
longest = max([len(ids) for ids in phoneme_ids])
|
370 |
-
phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids]
|
371 |
-
|
372 |
-
phoneme_ids = torch.tensor(phoneme_ids).to(device)
|
373 |
-
|
374 |
-
# Convert to embeddings
|
375 |
-
phoneme_embeds = self.phoneme_embedder(phoneme_ids)
|
376 |
-
|
377 |
-
phoneme_embeds = self.proj_out(phoneme_embeds)
|
378 |
-
|
379 |
-
return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device)
|
380 |
-
|
381 |
-
class TokenizerLUTConditioner(Conditioner):
|
382 |
-
"""
|
383 |
-
A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary
|
384 |
-
|
385 |
-
Args:
|
386 |
-
tokenizer_name: the name of the tokenizer from the Hugging Face transformers library
|
387 |
-
output_dim: the dimension of the output embeddings
|
388 |
-
max_length: the maximum length of the text to embed
|
389 |
-
project_out: whether to add another linear projection to the output embeddings
|
390 |
-
"""
|
391 |
-
|
392 |
-
def __init__(
|
393 |
-
self,
|
394 |
-
tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library
|
395 |
-
output_dim: int,
|
396 |
-
max_length: int = 1024,
|
397 |
-
project_out: bool = False,
|
398 |
-
):
|
399 |
-
super().__init__(output_dim, output_dim, project_out=project_out)
|
400 |
-
|
401 |
-
from transformers import AutoTokenizer
|
402 |
-
|
403 |
-
# Suppress logging from transformers
|
404 |
-
previous_level = logging.root.manager.disable
|
405 |
-
logging.disable(logging.ERROR)
|
406 |
-
with warnings.catch_warnings():
|
407 |
-
warnings.simplefilter("ignore")
|
408 |
-
try:
|
409 |
-
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
410 |
-
finally:
|
411 |
-
logging.disable(previous_level)
|
412 |
-
|
413 |
-
self.max_length = max_length
|
414 |
-
|
415 |
-
self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim)
|
416 |
-
|
417 |
-
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
418 |
-
self.proj_out.to(device)
|
419 |
-
|
420 |
-
encoded = self.tokenizer(
|
421 |
-
texts,
|
422 |
-
truncation=True,
|
423 |
-
max_length=self.max_length,
|
424 |
-
padding="max_length",
|
425 |
-
return_tensors="pt",
|
426 |
-
)
|
427 |
-
|
428 |
-
input_ids = encoded["input_ids"].to(device)
|
429 |
-
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
|
430 |
-
|
431 |
-
embeddings = self.token_embedder(input_ids)
|
432 |
-
|
433 |
-
embeddings = self.proj_out(embeddings)
|
434 |
-
|
435 |
-
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
|
436 |
-
|
437 |
-
return embeddings, attention_mask
|
438 |
-
|
439 |
-
class PretransformConditioner(Conditioner):
|
440 |
-
"""
|
441 |
-
A conditioner that uses a pretransform's encoder for conditioning
|
442 |
-
|
443 |
-
Args:
|
444 |
-
pretransform: an instantiated pretransform to use for conditioning
|
445 |
-
output_dim: the dimension of the output embeddings
|
446 |
-
"""
|
447 |
-
def __init__(self, pretransform: Pretransform, output_dim: int):
|
448 |
-
super().__init__(pretransform.encoded_channels, output_dim)
|
449 |
-
|
450 |
-
self.pretransform = pretransform
|
451 |
-
|
452 |
-
def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
453 |
-
|
454 |
-
self.pretransform.to(device)
|
455 |
-
self.proj_out.to(device)
|
456 |
-
|
457 |
-
if isinstance(audio, list) or isinstance(audio, tuple):
|
458 |
-
audio = torch.cat(audio, dim=0)
|
459 |
-
|
460 |
-
# Convert audio to pretransform input channels
|
461 |
-
audio = set_audio_channels(audio, self.pretransform.io_channels)
|
462 |
-
|
463 |
-
latents = self.pretransform.encode(audio)
|
464 |
-
|
465 |
-
latents = self.proj_out(latents)
|
466 |
-
|
467 |
-
return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)]
|
468 |
-
|
469 |
-
class MultiConditioner(nn.Module):
|
470 |
-
"""
|
471 |
-
A module that applies multiple conditioners to an input dictionary based on the keys
|
472 |
-
|
473 |
-
Args:
|
474 |
-
conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt")
|
475 |
-
default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"})
|
476 |
-
"""
|
477 |
-
def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}):
|
478 |
-
super().__init__()
|
479 |
-
|
480 |
-
self.conditioners = nn.ModuleDict(conditioners)
|
481 |
-
self.default_keys = default_keys
|
482 |
-
|
483 |
-
def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]:
|
484 |
-
output = {}
|
485 |
-
|
486 |
-
for key, conditioner in self.conditioners.items():
|
487 |
-
condition_key = key
|
488 |
-
|
489 |
-
conditioner_inputs = []
|
490 |
-
|
491 |
-
for x in batch_metadata:
|
492 |
-
|
493 |
-
if condition_key not in x:
|
494 |
-
if condition_key in self.default_keys:
|
495 |
-
condition_key = self.default_keys[condition_key]
|
496 |
-
else:
|
497 |
-
raise ValueError(f"Conditioner key {condition_key} not found in batch metadata")
|
498 |
-
|
499 |
-
#Unwrap the condition info if it's a single-element list or tuple, this is to support collation functions that wrap everything in a list
|
500 |
-
if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1:
|
501 |
-
conditioner_input = x[condition_key][0]
|
502 |
-
|
503 |
-
else:
|
504 |
-
conditioner_input = x[condition_key]
|
505 |
-
|
506 |
-
conditioner_inputs.append(conditioner_input)
|
507 |
-
|
508 |
-
output[key] = conditioner(conditioner_inputs, device)
|
509 |
-
|
510 |
-
return output
|
511 |
-
|
512 |
-
def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner:
|
513 |
-
"""
|
514 |
-
Create a MultiConditioner from a conditioning config dictionary
|
515 |
-
|
516 |
-
Args:
|
517 |
-
config: the conditioning config dictionary
|
518 |
-
device: the device to put the conditioners on
|
519 |
-
"""
|
520 |
-
conditioners = {}
|
521 |
-
cond_dim = config["cond_dim"]
|
522 |
-
|
523 |
-
default_keys = config.get("default_keys", {})
|
524 |
-
|
525 |
-
for conditioner_info in config["configs"]:
|
526 |
-
id = conditioner_info["id"]
|
527 |
-
|
528 |
-
conditioner_type = conditioner_info["type"]
|
529 |
-
|
530 |
-
conditioner_config = {"output_dim": cond_dim}
|
531 |
-
|
532 |
-
conditioner_config.update(conditioner_info["config"])
|
533 |
-
|
534 |
-
if conditioner_type == "t5":
|
535 |
-
conditioners[id] = T5Conditioner(**conditioner_config)
|
536 |
-
elif conditioner_type == "clap_text":
|
537 |
-
conditioners[id] = CLAPTextConditioner(**conditioner_config)
|
538 |
-
elif conditioner_type == "clap_audio":
|
539 |
-
conditioners[id] = CLAPAudioConditioner(**conditioner_config)
|
540 |
-
elif conditioner_type == "int":
|
541 |
-
conditioners[id] = IntConditioner(**conditioner_config)
|
542 |
-
elif conditioner_type == "number":
|
543 |
-
conditioners[id] = NumberConditioner(**conditioner_config)
|
544 |
-
elif conditioner_type == "phoneme":
|
545 |
-
conditioners[id] = PhonemeConditioner(**conditioner_config)
|
546 |
-
elif conditioner_type == "lut":
|
547 |
-
conditioners[id] = TokenizerLUTConditioner(**conditioner_config)
|
548 |
-
elif conditioner_type == "pretransform":
|
549 |
-
sample_rate = conditioner_config.pop("sample_rate", None)
|
550 |
-
assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners"
|
551 |
-
|
552 |
-
pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate)
|
553 |
-
|
554 |
-
if conditioner_config.get("pretransform_ckpt_path", None) is not None:
|
555 |
-
pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path")))
|
556 |
-
|
557 |
-
conditioners[id] = PretransformConditioner(pretransform, **conditioner_config)
|
558 |
-
else:
|
559 |
-
raise ValueError(f"Unknown conditioner type: {conditioner_type}")
|
560 |
-
|
561 |
-
return MultiConditioner(conditioners, default_keys=default_keys)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/diffusion.py
DELETED
@@ -1,701 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
from torch.nn import functional as F
|
4 |
-
from functools import partial
|
5 |
-
import numpy as np
|
6 |
-
import typing as tp
|
7 |
-
|
8 |
-
from .blocks import ResConvBlock, FourierFeatures, Upsample1d, Upsample1d_2, Downsample1d, Downsample1d_2, SelfAttention1d, SkipBlock, expand_to_planes
|
9 |
-
from .conditioners import MultiConditioner, create_multi_conditioner_from_conditioning_config
|
10 |
-
from .dit import DiffusionTransformer
|
11 |
-
from .factory import create_pretransform_from_config
|
12 |
-
from .pretransforms import Pretransform
|
13 |
-
from ..inference.generation import generate_diffusion_cond
|
14 |
-
|
15 |
-
from .adp import UNetCFG1d, UNet1d
|
16 |
-
|
17 |
-
from time import time
|
18 |
-
|
19 |
-
class Profiler:
|
20 |
-
|
21 |
-
def __init__(self):
|
22 |
-
self.ticks = [[time(), None]]
|
23 |
-
|
24 |
-
def tick(self, msg):
|
25 |
-
self.ticks.append([time(), msg])
|
26 |
-
|
27 |
-
def __repr__(self):
|
28 |
-
rep = 80 * "=" + "\n"
|
29 |
-
for i in range(1, len(self.ticks)):
|
30 |
-
msg = self.ticks[i][1]
|
31 |
-
ellapsed = self.ticks[i][0] - self.ticks[i - 1][0]
|
32 |
-
rep += msg + f": {ellapsed*1000:.2f}ms\n"
|
33 |
-
rep += 80 * "=" + "\n\n\n"
|
34 |
-
return rep
|
35 |
-
|
36 |
-
class DiffusionModel(nn.Module):
|
37 |
-
def __init__(self, *args, **kwargs):
|
38 |
-
super().__init__(*args, **kwargs)
|
39 |
-
|
40 |
-
def forward(self, x, t, **kwargs):
|
41 |
-
raise NotImplementedError()
|
42 |
-
|
43 |
-
class DiffusionModelWrapper(nn.Module):
|
44 |
-
def __init__(
|
45 |
-
self,
|
46 |
-
model: DiffusionModel,
|
47 |
-
io_channels,
|
48 |
-
sample_size,
|
49 |
-
sample_rate,
|
50 |
-
min_input_length,
|
51 |
-
pretransform: tp.Optional[Pretransform] = None,
|
52 |
-
):
|
53 |
-
super().__init__()
|
54 |
-
self.io_channels = io_channels
|
55 |
-
self.sample_size = sample_size
|
56 |
-
self.sample_rate = sample_rate
|
57 |
-
self.min_input_length = min_input_length
|
58 |
-
|
59 |
-
self.model = model
|
60 |
-
|
61 |
-
if pretransform is not None:
|
62 |
-
self.pretransform = pretransform
|
63 |
-
else:
|
64 |
-
self.pretransform = None
|
65 |
-
|
66 |
-
def forward(self, x, t, **kwargs):
|
67 |
-
return self.model(x, t, **kwargs)
|
68 |
-
|
69 |
-
class ConditionedDiffusionModel(nn.Module):
|
70 |
-
def __init__(self,
|
71 |
-
*args,
|
72 |
-
supports_cross_attention: bool = False,
|
73 |
-
supports_input_concat: bool = False,
|
74 |
-
supports_global_cond: bool = False,
|
75 |
-
supports_prepend_cond: bool = False,
|
76 |
-
**kwargs):
|
77 |
-
super().__init__(*args, **kwargs)
|
78 |
-
self.supports_cross_attention = supports_cross_attention
|
79 |
-
self.supports_input_concat = supports_input_concat
|
80 |
-
self.supports_global_cond = supports_global_cond
|
81 |
-
self.supports_prepend_cond = supports_prepend_cond
|
82 |
-
|
83 |
-
def forward(self,
|
84 |
-
x: torch.Tensor,
|
85 |
-
t: torch.Tensor,
|
86 |
-
cross_attn_cond: torch.Tensor = None,
|
87 |
-
cross_attn_mask: torch.Tensor = None,
|
88 |
-
input_concat_cond: torch.Tensor = None,
|
89 |
-
global_embed: torch.Tensor = None,
|
90 |
-
prepend_cond: torch.Tensor = None,
|
91 |
-
prepend_cond_mask: torch.Tensor = None,
|
92 |
-
cfg_scale: float = 1.0,
|
93 |
-
cfg_dropout_prob: float = 0.0,
|
94 |
-
batch_cfg: bool = False,
|
95 |
-
rescale_cfg: bool = False,
|
96 |
-
**kwargs):
|
97 |
-
raise NotImplementedError()
|
98 |
-
|
99 |
-
class ConditionedDiffusionModelWrapper(nn.Module):
|
100 |
-
"""
|
101 |
-
A diffusion model that takes in conditioning
|
102 |
-
"""
|
103 |
-
def __init__(
|
104 |
-
self,
|
105 |
-
model: ConditionedDiffusionModel,
|
106 |
-
conditioner: MultiConditioner,
|
107 |
-
io_channels,
|
108 |
-
sample_rate,
|
109 |
-
min_input_length: int,
|
110 |
-
diffusion_objective: tp.Literal["v", "rectified_flow"] = "v",
|
111 |
-
pretransform: tp.Optional[Pretransform] = None,
|
112 |
-
cross_attn_cond_ids: tp.List[str] = [],
|
113 |
-
global_cond_ids: tp.List[str] = [],
|
114 |
-
input_concat_ids: tp.List[str] = [],
|
115 |
-
prepend_cond_ids: tp.List[str] = [],
|
116 |
-
):
|
117 |
-
super().__init__()
|
118 |
-
|
119 |
-
self.model = model
|
120 |
-
self.conditioner = conditioner
|
121 |
-
self.io_channels = io_channels
|
122 |
-
self.sample_rate = sample_rate
|
123 |
-
self.diffusion_objective = diffusion_objective
|
124 |
-
self.pretransform = pretransform
|
125 |
-
self.cross_attn_cond_ids = cross_attn_cond_ids
|
126 |
-
self.global_cond_ids = global_cond_ids
|
127 |
-
self.input_concat_ids = input_concat_ids
|
128 |
-
self.prepend_cond_ids = prepend_cond_ids
|
129 |
-
self.min_input_length = min_input_length
|
130 |
-
|
131 |
-
def get_conditioning_inputs(self, conditioning_tensors: tp.Dict[str, tp.Any], negative=False):
|
132 |
-
cross_attention_input = None
|
133 |
-
cross_attention_masks = None
|
134 |
-
global_cond = None
|
135 |
-
input_concat_cond = None
|
136 |
-
prepend_cond = None
|
137 |
-
prepend_cond_mask = None
|
138 |
-
|
139 |
-
if len(self.cross_attn_cond_ids) > 0:
|
140 |
-
# Concatenate all cross-attention inputs over the sequence dimension
|
141 |
-
# Assumes that the cross-attention inputs are of shape (batch, seq, channels)
|
142 |
-
cross_attention_input = []
|
143 |
-
cross_attention_masks = []
|
144 |
-
|
145 |
-
for key in self.cross_attn_cond_ids:
|
146 |
-
cross_attn_in, cross_attn_mask = conditioning_tensors[key]
|
147 |
-
|
148 |
-
# Add sequence dimension if it's not there
|
149 |
-
if len(cross_attn_in.shape) == 2:
|
150 |
-
cross_attn_in = cross_attn_in.unsqueeze(1)
|
151 |
-
cross_attn_mask = cross_attn_mask.unsqueeze(1)
|
152 |
-
|
153 |
-
cross_attention_input.append(cross_attn_in)
|
154 |
-
cross_attention_masks.append(cross_attn_mask)
|
155 |
-
|
156 |
-
cross_attention_input = torch.cat(cross_attention_input, dim=1)
|
157 |
-
cross_attention_masks = torch.cat(cross_attention_masks, dim=1)
|
158 |
-
|
159 |
-
if len(self.global_cond_ids) > 0:
|
160 |
-
# Concatenate all global conditioning inputs over the channel dimension
|
161 |
-
# Assumes that the global conditioning inputs are of shape (batch, channels)
|
162 |
-
global_conds = []
|
163 |
-
for key in self.global_cond_ids:
|
164 |
-
global_cond_input = conditioning_tensors[key][0]
|
165 |
-
|
166 |
-
global_conds.append(global_cond_input)
|
167 |
-
|
168 |
-
# Concatenate over the channel dimension
|
169 |
-
global_cond = torch.cat(global_conds, dim=-1)
|
170 |
-
|
171 |
-
if len(global_cond.shape) == 3:
|
172 |
-
global_cond = global_cond.squeeze(1)
|
173 |
-
|
174 |
-
if len(self.input_concat_ids) > 0:
|
175 |
-
# Concatenate all input concat conditioning inputs over the channel dimension
|
176 |
-
# Assumes that the input concat conditioning inputs are of shape (batch, channels, seq)
|
177 |
-
input_concat_cond = torch.cat([conditioning_tensors[key][0] for key in self.input_concat_ids], dim=1)
|
178 |
-
|
179 |
-
if len(self.prepend_cond_ids) > 0:
|
180 |
-
# Concatenate all prepend conditioning inputs over the sequence dimension
|
181 |
-
# Assumes that the prepend conditioning inputs are of shape (batch, seq, channels)
|
182 |
-
prepend_conds = []
|
183 |
-
prepend_cond_masks = []
|
184 |
-
|
185 |
-
for key in self.prepend_cond_ids:
|
186 |
-
prepend_cond_input, prepend_cond_mask = conditioning_tensors[key]
|
187 |
-
prepend_conds.append(prepend_cond_input)
|
188 |
-
prepend_cond_masks.append(prepend_cond_mask)
|
189 |
-
|
190 |
-
prepend_cond = torch.cat(prepend_conds, dim=1)
|
191 |
-
prepend_cond_mask = torch.cat(prepend_cond_masks, dim=1)
|
192 |
-
|
193 |
-
if negative:
|
194 |
-
return {
|
195 |
-
"negative_cross_attn_cond": cross_attention_input,
|
196 |
-
"negative_cross_attn_mask": cross_attention_masks,
|
197 |
-
"negative_global_cond": global_cond,
|
198 |
-
"negative_input_concat_cond": input_concat_cond
|
199 |
-
}
|
200 |
-
else:
|
201 |
-
return {
|
202 |
-
"cross_attn_cond": cross_attention_input,
|
203 |
-
"cross_attn_mask": cross_attention_masks,
|
204 |
-
"global_cond": global_cond,
|
205 |
-
"input_concat_cond": input_concat_cond,
|
206 |
-
"prepend_cond": prepend_cond,
|
207 |
-
"prepend_cond_mask": prepend_cond_mask
|
208 |
-
}
|
209 |
-
|
210 |
-
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: tp.Dict[str, tp.Any], **kwargs):
|
211 |
-
return self.model(x, t, **self.get_conditioning_inputs(cond), **kwargs)
|
212 |
-
|
213 |
-
def generate(self, *args, **kwargs):
|
214 |
-
return generate_diffusion_cond(self, *args, **kwargs)
|
215 |
-
|
216 |
-
class UNetCFG1DWrapper(ConditionedDiffusionModel):
|
217 |
-
def __init__(
|
218 |
-
self,
|
219 |
-
*args,
|
220 |
-
**kwargs
|
221 |
-
):
|
222 |
-
super().__init__(supports_cross_attention=True, supports_global_cond=True, supports_input_concat=True)
|
223 |
-
|
224 |
-
self.model = UNetCFG1d(*args, **kwargs)
|
225 |
-
|
226 |
-
with torch.no_grad():
|
227 |
-
for param in self.model.parameters():
|
228 |
-
param *= 0.5
|
229 |
-
|
230 |
-
def forward(self,
|
231 |
-
x,
|
232 |
-
t,
|
233 |
-
cross_attn_cond=None,
|
234 |
-
cross_attn_mask=None,
|
235 |
-
input_concat_cond=None,
|
236 |
-
global_cond=None,
|
237 |
-
cfg_scale=1.0,
|
238 |
-
cfg_dropout_prob: float = 0.0,
|
239 |
-
batch_cfg: bool = False,
|
240 |
-
rescale_cfg: bool = False,
|
241 |
-
negative_cross_attn_cond=None,
|
242 |
-
negative_cross_attn_mask=None,
|
243 |
-
negative_global_cond=None,
|
244 |
-
negative_input_concat_cond=None,
|
245 |
-
prepend_cond=None,
|
246 |
-
prepend_cond_mask=None,
|
247 |
-
**kwargs):
|
248 |
-
p = Profiler()
|
249 |
-
|
250 |
-
p.tick("start")
|
251 |
-
|
252 |
-
channels_list = None
|
253 |
-
if input_concat_cond is not None:
|
254 |
-
channels_list = [input_concat_cond]
|
255 |
-
|
256 |
-
outputs = self.model(
|
257 |
-
x,
|
258 |
-
t,
|
259 |
-
embedding=cross_attn_cond,
|
260 |
-
embedding_mask=cross_attn_mask,
|
261 |
-
features=global_cond,
|
262 |
-
channels_list=channels_list,
|
263 |
-
embedding_scale=cfg_scale,
|
264 |
-
embedding_mask_proba=cfg_dropout_prob,
|
265 |
-
batch_cfg=batch_cfg,
|
266 |
-
rescale_cfg=rescale_cfg,
|
267 |
-
negative_embedding=negative_cross_attn_cond,
|
268 |
-
negative_embedding_mask=negative_cross_attn_mask,
|
269 |
-
**kwargs)
|
270 |
-
|
271 |
-
p.tick("UNetCFG1D forward")
|
272 |
-
|
273 |
-
#print(f"Profiler: {p}")
|
274 |
-
return outputs
|
275 |
-
|
276 |
-
class UNet1DCondWrapper(ConditionedDiffusionModel):
|
277 |
-
def __init__(
|
278 |
-
self,
|
279 |
-
*args,
|
280 |
-
**kwargs
|
281 |
-
):
|
282 |
-
super().__init__(supports_cross_attention=False, supports_global_cond=True, supports_input_concat=True)
|
283 |
-
|
284 |
-
self.model = UNet1d(*args, **kwargs)
|
285 |
-
|
286 |
-
with torch.no_grad():
|
287 |
-
for param in self.model.parameters():
|
288 |
-
param *= 0.5
|
289 |
-
|
290 |
-
def forward(self,
|
291 |
-
x,
|
292 |
-
t,
|
293 |
-
input_concat_cond=None,
|
294 |
-
global_cond=None,
|
295 |
-
cross_attn_cond=None,
|
296 |
-
cross_attn_mask=None,
|
297 |
-
prepend_cond=None,
|
298 |
-
prepend_cond_mask=None,
|
299 |
-
cfg_scale=1.0,
|
300 |
-
cfg_dropout_prob: float = 0.0,
|
301 |
-
batch_cfg: bool = False,
|
302 |
-
rescale_cfg: bool = False,
|
303 |
-
negative_cross_attn_cond=None,
|
304 |
-
negative_cross_attn_mask=None,
|
305 |
-
negative_global_cond=None,
|
306 |
-
negative_input_concat_cond=None,
|
307 |
-
**kwargs):
|
308 |
-
|
309 |
-
channels_list = None
|
310 |
-
if input_concat_cond is not None:
|
311 |
-
|
312 |
-
# Interpolate input_concat_cond to the same length as x
|
313 |
-
if input_concat_cond.shape[2] != x.shape[2]:
|
314 |
-
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
|
315 |
-
|
316 |
-
channels_list = [input_concat_cond]
|
317 |
-
|
318 |
-
outputs = self.model(
|
319 |
-
x,
|
320 |
-
t,
|
321 |
-
features=global_cond,
|
322 |
-
channels_list=channels_list,
|
323 |
-
**kwargs)
|
324 |
-
|
325 |
-
return outputs
|
326 |
-
|
327 |
-
class UNet1DUncondWrapper(DiffusionModel):
|
328 |
-
def __init__(
|
329 |
-
self,
|
330 |
-
in_channels,
|
331 |
-
*args,
|
332 |
-
**kwargs
|
333 |
-
):
|
334 |
-
super().__init__()
|
335 |
-
|
336 |
-
self.model = UNet1d(in_channels=in_channels, *args, **kwargs)
|
337 |
-
|
338 |
-
self.io_channels = in_channels
|
339 |
-
|
340 |
-
with torch.no_grad():
|
341 |
-
for param in self.model.parameters():
|
342 |
-
param *= 0.5
|
343 |
-
|
344 |
-
def forward(self, x, t, **kwargs):
|
345 |
-
return self.model(x, t, **kwargs)
|
346 |
-
|
347 |
-
class DAU1DCondWrapper(ConditionedDiffusionModel):
|
348 |
-
def __init__(
|
349 |
-
self,
|
350 |
-
*args,
|
351 |
-
**kwargs
|
352 |
-
):
|
353 |
-
super().__init__(supports_cross_attention=False, supports_global_cond=False, supports_input_concat=True)
|
354 |
-
|
355 |
-
self.model = DiffusionAttnUnet1D(*args, **kwargs)
|
356 |
-
|
357 |
-
with torch.no_grad():
|
358 |
-
for param in self.model.parameters():
|
359 |
-
param *= 0.5
|
360 |
-
|
361 |
-
def forward(self,
|
362 |
-
x,
|
363 |
-
t,
|
364 |
-
input_concat_cond=None,
|
365 |
-
cross_attn_cond=None,
|
366 |
-
cross_attn_mask=None,
|
367 |
-
global_cond=None,
|
368 |
-
cfg_scale=1.0,
|
369 |
-
cfg_dropout_prob: float = 0.0,
|
370 |
-
batch_cfg: bool = False,
|
371 |
-
rescale_cfg: bool = False,
|
372 |
-
negative_cross_attn_cond=None,
|
373 |
-
negative_cross_attn_mask=None,
|
374 |
-
negative_global_cond=None,
|
375 |
-
negative_input_concat_cond=None,
|
376 |
-
prepend_cond=None,
|
377 |
-
**kwargs):
|
378 |
-
|
379 |
-
return self.model(x, t, cond = input_concat_cond)
|
380 |
-
|
381 |
-
class DiffusionAttnUnet1D(nn.Module):
|
382 |
-
def __init__(
|
383 |
-
self,
|
384 |
-
io_channels = 2,
|
385 |
-
depth=14,
|
386 |
-
n_attn_layers = 6,
|
387 |
-
channels = [128, 128, 256, 256] + [512] * 10,
|
388 |
-
cond_dim = 0,
|
389 |
-
cond_noise_aug = False,
|
390 |
-
kernel_size = 5,
|
391 |
-
learned_resample = False,
|
392 |
-
strides = [2] * 13,
|
393 |
-
conv_bias = True,
|
394 |
-
use_snake = False
|
395 |
-
):
|
396 |
-
super().__init__()
|
397 |
-
|
398 |
-
self.cond_noise_aug = cond_noise_aug
|
399 |
-
|
400 |
-
self.io_channels = io_channels
|
401 |
-
|
402 |
-
if self.cond_noise_aug:
|
403 |
-
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
404 |
-
|
405 |
-
self.timestep_embed = FourierFeatures(1, 16)
|
406 |
-
|
407 |
-
attn_layer = depth - n_attn_layers
|
408 |
-
|
409 |
-
strides = [1] + strides
|
410 |
-
|
411 |
-
block = nn.Identity()
|
412 |
-
|
413 |
-
conv_block = partial(ResConvBlock, kernel_size=kernel_size, conv_bias = conv_bias, use_snake=use_snake)
|
414 |
-
|
415 |
-
for i in range(depth, 0, -1):
|
416 |
-
c = channels[i - 1]
|
417 |
-
stride = strides[i-1]
|
418 |
-
if stride > 2 and not learned_resample:
|
419 |
-
raise ValueError("Must have stride 2 without learned resampling")
|
420 |
-
|
421 |
-
if i > 1:
|
422 |
-
c_prev = channels[i - 2]
|
423 |
-
add_attn = i >= attn_layer and n_attn_layers > 0
|
424 |
-
block = SkipBlock(
|
425 |
-
Downsample1d_2(c_prev, c_prev, stride) if (learned_resample or stride == 1) else Downsample1d("cubic"),
|
426 |
-
conv_block(c_prev, c, c),
|
427 |
-
SelfAttention1d(
|
428 |
-
c, c // 32) if add_attn else nn.Identity(),
|
429 |
-
conv_block(c, c, c),
|
430 |
-
SelfAttention1d(
|
431 |
-
c, c // 32) if add_attn else nn.Identity(),
|
432 |
-
conv_block(c, c, c),
|
433 |
-
SelfAttention1d(
|
434 |
-
c, c // 32) if add_attn else nn.Identity(),
|
435 |
-
block,
|
436 |
-
conv_block(c * 2 if i != depth else c, c, c),
|
437 |
-
SelfAttention1d(
|
438 |
-
c, c // 32) if add_attn else nn.Identity(),
|
439 |
-
conv_block(c, c, c),
|
440 |
-
SelfAttention1d(
|
441 |
-
c, c // 32) if add_attn else nn.Identity(),
|
442 |
-
conv_block(c, c, c_prev),
|
443 |
-
SelfAttention1d(c_prev, c_prev //
|
444 |
-
32) if add_attn else nn.Identity(),
|
445 |
-
Upsample1d_2(c_prev, c_prev, stride) if learned_resample else Upsample1d(kernel="cubic")
|
446 |
-
)
|
447 |
-
else:
|
448 |
-
cond_embed_dim = 16 if not self.cond_noise_aug else 32
|
449 |
-
block = nn.Sequential(
|
450 |
-
conv_block((io_channels + cond_dim) + cond_embed_dim, c, c),
|
451 |
-
conv_block(c, c, c),
|
452 |
-
conv_block(c, c, c),
|
453 |
-
block,
|
454 |
-
conv_block(c * 2, c, c),
|
455 |
-
conv_block(c, c, c),
|
456 |
-
conv_block(c, c, io_channels, is_last=True),
|
457 |
-
)
|
458 |
-
self.net = block
|
459 |
-
|
460 |
-
with torch.no_grad():
|
461 |
-
for param in self.net.parameters():
|
462 |
-
param *= 0.5
|
463 |
-
|
464 |
-
def forward(self, x, t, cond=None, cond_aug_scale=None):
|
465 |
-
|
466 |
-
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), x.shape)
|
467 |
-
|
468 |
-
inputs = [x, timestep_embed]
|
469 |
-
|
470 |
-
if cond is not None:
|
471 |
-
if cond.shape[2] != x.shape[2]:
|
472 |
-
cond = F.interpolate(cond, (x.shape[2], ), mode='linear', align_corners=False)
|
473 |
-
|
474 |
-
if self.cond_noise_aug:
|
475 |
-
# Get a random number between 0 and 1, uniformly sampled
|
476 |
-
if cond_aug_scale is None:
|
477 |
-
aug_level = self.rng.draw(cond.shape[0])[:, 0].to(cond)
|
478 |
-
else:
|
479 |
-
aug_level = torch.tensor([cond_aug_scale]).repeat([cond.shape[0]]).to(cond)
|
480 |
-
|
481 |
-
# Add noise to the conditioning signal
|
482 |
-
cond = cond + torch.randn_like(cond) * aug_level[:, None, None]
|
483 |
-
|
484 |
-
# Get embedding for noise cond level, reusing timestamp_embed
|
485 |
-
aug_level_embed = expand_to_planes(self.timestep_embed(aug_level[:, None]), x.shape)
|
486 |
-
|
487 |
-
inputs.append(aug_level_embed)
|
488 |
-
|
489 |
-
inputs.append(cond)
|
490 |
-
|
491 |
-
outputs = self.net(torch.cat(inputs, dim=1))
|
492 |
-
|
493 |
-
return outputs
|
494 |
-
|
495 |
-
class DiTWrapper(ConditionedDiffusionModel):
|
496 |
-
def __init__(
|
497 |
-
self,
|
498 |
-
*args,
|
499 |
-
**kwargs
|
500 |
-
):
|
501 |
-
super().__init__(supports_cross_attention=True, supports_global_cond=False, supports_input_concat=False)
|
502 |
-
|
503 |
-
self.model = DiffusionTransformer(*args, **kwargs)
|
504 |
-
|
505 |
-
with torch.no_grad():
|
506 |
-
for param in self.model.parameters():
|
507 |
-
param *= 0.5
|
508 |
-
|
509 |
-
def forward(self,
|
510 |
-
x,
|
511 |
-
t,
|
512 |
-
cross_attn_cond=None,
|
513 |
-
cross_attn_mask=None,
|
514 |
-
negative_cross_attn_cond=None,
|
515 |
-
negative_cross_attn_mask=None,
|
516 |
-
input_concat_cond=None,
|
517 |
-
negative_input_concat_cond=None,
|
518 |
-
global_cond=None,
|
519 |
-
negative_global_cond=None,
|
520 |
-
prepend_cond=None,
|
521 |
-
prepend_cond_mask=None,
|
522 |
-
cfg_scale=1.0,
|
523 |
-
cfg_dropout_prob: float = 0.0,
|
524 |
-
batch_cfg: bool = True,
|
525 |
-
rescale_cfg: bool = False,
|
526 |
-
scale_phi: float = 0.0,
|
527 |
-
**kwargs):
|
528 |
-
|
529 |
-
assert batch_cfg, "batch_cfg must be True for DiTWrapper"
|
530 |
-
#assert negative_input_concat_cond is None, "negative_input_concat_cond is not supported for DiTWrapper"
|
531 |
-
|
532 |
-
return self.model(
|
533 |
-
x,
|
534 |
-
t,
|
535 |
-
cross_attn_cond=cross_attn_cond,
|
536 |
-
cross_attn_cond_mask=cross_attn_mask,
|
537 |
-
negative_cross_attn_cond=negative_cross_attn_cond,
|
538 |
-
negative_cross_attn_mask=negative_cross_attn_mask,
|
539 |
-
input_concat_cond=input_concat_cond,
|
540 |
-
prepend_cond=prepend_cond,
|
541 |
-
prepend_cond_mask=prepend_cond_mask,
|
542 |
-
cfg_scale=cfg_scale,
|
543 |
-
cfg_dropout_prob=cfg_dropout_prob,
|
544 |
-
scale_phi=scale_phi,
|
545 |
-
global_embed=global_cond,
|
546 |
-
**kwargs)
|
547 |
-
|
548 |
-
class DiTUncondWrapper(DiffusionModel):
|
549 |
-
def __init__(
|
550 |
-
self,
|
551 |
-
in_channels,
|
552 |
-
*args,
|
553 |
-
**kwargs
|
554 |
-
):
|
555 |
-
super().__init__()
|
556 |
-
|
557 |
-
self.model = DiffusionTransformer(io_channels=in_channels, *args, **kwargs)
|
558 |
-
|
559 |
-
self.io_channels = in_channels
|
560 |
-
|
561 |
-
with torch.no_grad():
|
562 |
-
for param in self.model.parameters():
|
563 |
-
param *= 0.5
|
564 |
-
|
565 |
-
def forward(self, x, t, **kwargs):
|
566 |
-
return self.model(x, t, **kwargs)
|
567 |
-
|
568 |
-
def create_diffusion_uncond_from_config(config: tp.Dict[str, tp.Any]):
|
569 |
-
diffusion_uncond_config = config["model"]
|
570 |
-
|
571 |
-
model_type = diffusion_uncond_config.get('type', None)
|
572 |
-
|
573 |
-
diffusion_config = diffusion_uncond_config.get('config', {})
|
574 |
-
|
575 |
-
assert model_type is not None, "Must specify model type in config"
|
576 |
-
|
577 |
-
pretransform = diffusion_uncond_config.get("pretransform", None)
|
578 |
-
|
579 |
-
sample_size = config.get("sample_size", None)
|
580 |
-
assert sample_size is not None, "Must specify sample size in config"
|
581 |
-
|
582 |
-
sample_rate = config.get("sample_rate", None)
|
583 |
-
assert sample_rate is not None, "Must specify sample rate in config"
|
584 |
-
|
585 |
-
if pretransform is not None:
|
586 |
-
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
587 |
-
min_input_length = pretransform.downsampling_ratio
|
588 |
-
else:
|
589 |
-
min_input_length = 1
|
590 |
-
|
591 |
-
if model_type == 'DAU1d':
|
592 |
-
|
593 |
-
model = DiffusionAttnUnet1D(
|
594 |
-
**diffusion_config
|
595 |
-
)
|
596 |
-
|
597 |
-
elif model_type == "adp_uncond_1d":
|
598 |
-
|
599 |
-
model = UNet1DUncondWrapper(
|
600 |
-
**diffusion_config
|
601 |
-
)
|
602 |
-
|
603 |
-
elif model_type == "dit":
|
604 |
-
model = DiTUncondWrapper(
|
605 |
-
**diffusion_config
|
606 |
-
)
|
607 |
-
|
608 |
-
else:
|
609 |
-
raise NotImplementedError(f'Unknown model type: {model_type}')
|
610 |
-
|
611 |
-
return DiffusionModelWrapper(model,
|
612 |
-
io_channels=model.io_channels,
|
613 |
-
sample_size=sample_size,
|
614 |
-
sample_rate=sample_rate,
|
615 |
-
pretransform=pretransform,
|
616 |
-
min_input_length=min_input_length)
|
617 |
-
|
618 |
-
def create_diffusion_cond_from_config(config: tp.Dict[str, tp.Any]):
|
619 |
-
|
620 |
-
model_config = config["model"]
|
621 |
-
|
622 |
-
model_type = config["model_type"]
|
623 |
-
|
624 |
-
diffusion_config = model_config.get('diffusion', None)
|
625 |
-
assert diffusion_config is not None, "Must specify diffusion config"
|
626 |
-
|
627 |
-
diffusion_model_type = diffusion_config.get('type', None)
|
628 |
-
assert diffusion_model_type is not None, "Must specify diffusion model type"
|
629 |
-
|
630 |
-
diffusion_model_config = diffusion_config.get('config', None)
|
631 |
-
assert diffusion_model_config is not None, "Must specify diffusion model config"
|
632 |
-
|
633 |
-
if diffusion_model_type == 'adp_cfg_1d':
|
634 |
-
diffusion_model = UNetCFG1DWrapper(**diffusion_model_config)
|
635 |
-
elif diffusion_model_type == 'adp_1d':
|
636 |
-
diffusion_model = UNet1DCondWrapper(**diffusion_model_config)
|
637 |
-
elif diffusion_model_type == 'dit':
|
638 |
-
diffusion_model = DiTWrapper(**diffusion_model_config)
|
639 |
-
|
640 |
-
io_channels = model_config.get('io_channels', None)
|
641 |
-
assert io_channels is not None, "Must specify io_channels in model config"
|
642 |
-
|
643 |
-
sample_rate = config.get('sample_rate', None)
|
644 |
-
assert sample_rate is not None, "Must specify sample_rate in config"
|
645 |
-
|
646 |
-
diffusion_objective = diffusion_config.get('diffusion_objective', 'v')
|
647 |
-
|
648 |
-
conditioning_config = model_config.get('conditioning', None)
|
649 |
-
|
650 |
-
conditioner = None
|
651 |
-
if conditioning_config is not None:
|
652 |
-
conditioner = create_multi_conditioner_from_conditioning_config(conditioning_config)
|
653 |
-
|
654 |
-
cross_attention_ids = diffusion_config.get('cross_attention_cond_ids', [])
|
655 |
-
global_cond_ids = diffusion_config.get('global_cond_ids', [])
|
656 |
-
input_concat_ids = diffusion_config.get('input_concat_ids', [])
|
657 |
-
prepend_cond_ids = diffusion_config.get('prepend_cond_ids', [])
|
658 |
-
|
659 |
-
pretransform = model_config.get("pretransform", None)
|
660 |
-
|
661 |
-
if pretransform is not None:
|
662 |
-
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
663 |
-
min_input_length = pretransform.downsampling_ratio
|
664 |
-
else:
|
665 |
-
min_input_length = 1
|
666 |
-
|
667 |
-
if diffusion_model_type == "adp_cfg_1d" or diffusion_model_type == "adp_1d":
|
668 |
-
min_input_length *= np.prod(diffusion_model_config["factors"])
|
669 |
-
elif diffusion_model_type == "dit":
|
670 |
-
min_input_length *= diffusion_model.model.patch_size
|
671 |
-
|
672 |
-
# Get the proper wrapper class
|
673 |
-
|
674 |
-
extra_kwargs = {}
|
675 |
-
|
676 |
-
if model_type == "diffusion_cond" or model_type == "diffusion_cond_inpaint":
|
677 |
-
wrapper_fn = ConditionedDiffusionModelWrapper
|
678 |
-
|
679 |
-
extra_kwargs["diffusion_objective"] = diffusion_objective
|
680 |
-
|
681 |
-
elif model_type == "diffusion_prior":
|
682 |
-
prior_type = model_config.get("prior_type", None)
|
683 |
-
assert prior_type is not None, "Must specify prior_type in diffusion prior model config"
|
684 |
-
|
685 |
-
if prior_type == "mono_stereo":
|
686 |
-
from .diffusion_prior import MonoToStereoDiffusionPrior
|
687 |
-
wrapper_fn = MonoToStereoDiffusionPrior
|
688 |
-
|
689 |
-
return wrapper_fn(
|
690 |
-
diffusion_model,
|
691 |
-
conditioner,
|
692 |
-
min_input_length=min_input_length,
|
693 |
-
sample_rate=sample_rate,
|
694 |
-
cross_attn_cond_ids=cross_attention_ids,
|
695 |
-
global_cond_ids=global_cond_ids,
|
696 |
-
input_concat_ids=input_concat_ids,
|
697 |
-
prepend_cond_ids=prepend_cond_ids,
|
698 |
-
pretransform=pretransform,
|
699 |
-
io_channels=io_channels,
|
700 |
-
**extra_kwargs
|
701 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/diffusion_prior.py
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
from enum import Enum
|
2 |
-
import typing as tp
|
3 |
-
|
4 |
-
from .diffusion import ConditionedDiffusionModelWrapper
|
5 |
-
from ..inference.generation import generate_diffusion_cond
|
6 |
-
from ..inference.utils import prepare_audio
|
7 |
-
|
8 |
-
import torch
|
9 |
-
from torch.nn import functional as F
|
10 |
-
from torchaudio import transforms as T
|
11 |
-
|
12 |
-
# Define prior types enum
|
13 |
-
class PriorType(Enum):
|
14 |
-
MonoToStereo = 1
|
15 |
-
|
16 |
-
class DiffusionPrior(ConditionedDiffusionModelWrapper):
|
17 |
-
def __init__(self, *args, prior_type: PriorType=None, **kwargs):
|
18 |
-
super().__init__(*args, **kwargs)
|
19 |
-
self.prior_type = prior_type
|
20 |
-
|
21 |
-
class MonoToStereoDiffusionPrior(DiffusionPrior):
|
22 |
-
def __init__(self, *args, **kwargs):
|
23 |
-
super().__init__(*args, prior_type=PriorType.MonoToStereo, **kwargs)
|
24 |
-
|
25 |
-
def stereoize(
|
26 |
-
self,
|
27 |
-
audio: torch.Tensor, # (batch, channels, time)
|
28 |
-
in_sr: int,
|
29 |
-
steps: int,
|
30 |
-
sampler_kwargs: dict = {},
|
31 |
-
):
|
32 |
-
"""
|
33 |
-
Generate stereo audio from mono audio using a pre-trained diffusion prior
|
34 |
-
|
35 |
-
Args:
|
36 |
-
audio: The mono audio to convert to stereo
|
37 |
-
in_sr: The sample rate of the input audio
|
38 |
-
steps: The number of diffusion steps to run
|
39 |
-
sampler_kwargs: Keyword arguments to pass to the diffusion sampler
|
40 |
-
"""
|
41 |
-
|
42 |
-
device = audio.device
|
43 |
-
|
44 |
-
sample_rate = self.sample_rate
|
45 |
-
|
46 |
-
# Resample input audio if necessary
|
47 |
-
if in_sr != sample_rate:
|
48 |
-
resample_tf = T.Resample(in_sr, sample_rate).to(audio.device)
|
49 |
-
audio = resample_tf(audio)
|
50 |
-
|
51 |
-
audio_length = audio.shape[-1]
|
52 |
-
|
53 |
-
# Pad input audio to be compatible with the model
|
54 |
-
min_length = self.min_input_length
|
55 |
-
padded_input_length = audio_length + (min_length - (audio_length % min_length)) % min_length
|
56 |
-
|
57 |
-
# Pad input audio to be compatible with the model
|
58 |
-
if padded_input_length > audio_length:
|
59 |
-
audio = F.pad(audio, (0, padded_input_length - audio_length))
|
60 |
-
|
61 |
-
# Make audio mono, duplicate to stereo
|
62 |
-
dual_mono = audio.mean(1, keepdim=True).repeat(1, 2, 1)
|
63 |
-
|
64 |
-
if self.pretransform is not None:
|
65 |
-
dual_mono = self.pretransform.encode(dual_mono)
|
66 |
-
|
67 |
-
conditioning = {"source": [dual_mono]}
|
68 |
-
|
69 |
-
stereo_audio = generate_diffusion_cond(
|
70 |
-
self,
|
71 |
-
conditioning_tensors=conditioning,
|
72 |
-
steps=steps,
|
73 |
-
sample_size=padded_input_length,
|
74 |
-
sample_rate=sample_rate,
|
75 |
-
device=device,
|
76 |
-
**sampler_kwargs,
|
77 |
-
)
|
78 |
-
|
79 |
-
return stereo_audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/discriminators.py
DELETED
@@ -1,546 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import numpy as np
|
5 |
-
from functools import reduce
|
6 |
-
import typing as tp
|
7 |
-
from einops import rearrange
|
8 |
-
from audiotools import AudioSignal, STFTParams
|
9 |
-
from dac.model.discriminator import WNConv1d, WNConv2d
|
10 |
-
|
11 |
-
def get_hinge_losses(score_real, score_fake):
|
12 |
-
gen_loss = -score_fake.mean()
|
13 |
-
dis_loss = torch.relu(1 - score_real).mean() + torch.relu(1 + score_fake).mean()
|
14 |
-
return dis_loss, gen_loss
|
15 |
-
|
16 |
-
class EncodecDiscriminator(nn.Module):
|
17 |
-
|
18 |
-
def __init__(self, *args, **kwargs):
|
19 |
-
super().__init__()
|
20 |
-
|
21 |
-
from encodec.msstftd import MultiScaleSTFTDiscriminator
|
22 |
-
|
23 |
-
self.discriminators = MultiScaleSTFTDiscriminator(*args, **kwargs)
|
24 |
-
|
25 |
-
def forward(self, x):
|
26 |
-
logits, features = self.discriminators(x)
|
27 |
-
return logits, features
|
28 |
-
|
29 |
-
def loss(self, x, y):
|
30 |
-
feature_matching_distance = 0.
|
31 |
-
logits_true, feature_true = self.forward(x)
|
32 |
-
logits_fake, feature_fake = self.forward(y)
|
33 |
-
|
34 |
-
dis_loss = torch.tensor(0.)
|
35 |
-
adv_loss = torch.tensor(0.)
|
36 |
-
|
37 |
-
for i, (scale_true, scale_fake) in enumerate(zip(feature_true, feature_fake)):
|
38 |
-
|
39 |
-
feature_matching_distance = feature_matching_distance + sum(
|
40 |
-
map(
|
41 |
-
lambda x, y: abs(x - y).mean(),
|
42 |
-
scale_true,
|
43 |
-
scale_fake,
|
44 |
-
)) / len(scale_true)
|
45 |
-
|
46 |
-
_dis, _adv = get_hinge_losses(
|
47 |
-
logits_true[i],
|
48 |
-
logits_fake[i],
|
49 |
-
)
|
50 |
-
|
51 |
-
dis_loss = dis_loss + _dis
|
52 |
-
adv_loss = adv_loss + _adv
|
53 |
-
|
54 |
-
return dis_loss, adv_loss, feature_matching_distance
|
55 |
-
|
56 |
-
# Discriminators from oobleck
|
57 |
-
|
58 |
-
IndividualDiscriminatorOut = tp.Tuple[torch.Tensor, tp.Sequence[torch.Tensor]]
|
59 |
-
|
60 |
-
TensorDict = tp.Dict[str, torch.Tensor]
|
61 |
-
|
62 |
-
class SharedDiscriminatorConvNet(nn.Module):
|
63 |
-
|
64 |
-
def __init__(
|
65 |
-
self,
|
66 |
-
in_size: int,
|
67 |
-
convolution: tp.Union[nn.Conv1d, nn.Conv2d],
|
68 |
-
out_size: int = 1,
|
69 |
-
capacity: int = 32,
|
70 |
-
n_layers: int = 4,
|
71 |
-
kernel_size: int = 15,
|
72 |
-
stride: int = 4,
|
73 |
-
activation: tp.Callable[[], nn.Module] = lambda: nn.SiLU(),
|
74 |
-
normalization: tp.Callable[[nn.Module], nn.Module] = torch.nn.utils.weight_norm,
|
75 |
-
) -> None:
|
76 |
-
super().__init__()
|
77 |
-
channels = [in_size]
|
78 |
-
channels += list(capacity * 2**np.arange(n_layers))
|
79 |
-
|
80 |
-
if isinstance(stride, int):
|
81 |
-
stride = n_layers * [stride]
|
82 |
-
|
83 |
-
net = []
|
84 |
-
for i in range(n_layers):
|
85 |
-
if isinstance(kernel_size, int):
|
86 |
-
pad = kernel_size // 2
|
87 |
-
s = stride[i]
|
88 |
-
else:
|
89 |
-
pad = kernel_size[0] // 2
|
90 |
-
s = (stride[i], 1)
|
91 |
-
|
92 |
-
net.append(
|
93 |
-
normalization(
|
94 |
-
convolution(
|
95 |
-
channels[i],
|
96 |
-
channels[i + 1],
|
97 |
-
kernel_size,
|
98 |
-
stride=s,
|
99 |
-
padding=pad,
|
100 |
-
)))
|
101 |
-
net.append(activation())
|
102 |
-
|
103 |
-
net.append(convolution(channels[-1], out_size, 1))
|
104 |
-
|
105 |
-
self.net = nn.ModuleList(net)
|
106 |
-
|
107 |
-
def forward(self, x) -> IndividualDiscriminatorOut:
|
108 |
-
features = []
|
109 |
-
for layer in self.net:
|
110 |
-
x = layer(x)
|
111 |
-
if isinstance(layer, nn.modules.conv._ConvNd):
|
112 |
-
features.append(x)
|
113 |
-
score = x.reshape(x.shape[0], -1).mean(-1)
|
114 |
-
return score, features
|
115 |
-
|
116 |
-
|
117 |
-
class MultiScaleDiscriminator(nn.Module):
|
118 |
-
|
119 |
-
def __init__(self,
|
120 |
-
in_channels: int,
|
121 |
-
n_scales: int,
|
122 |
-
**conv_kwargs) -> None:
|
123 |
-
super().__init__()
|
124 |
-
layers = []
|
125 |
-
for _ in range(n_scales):
|
126 |
-
layers.append(SharedDiscriminatorConvNet(in_channels, nn.Conv1d, **conv_kwargs))
|
127 |
-
self.layers = nn.ModuleList(layers)
|
128 |
-
|
129 |
-
def forward(self, x: torch.Tensor) -> IndividualDiscriminatorOut:
|
130 |
-
score = 0
|
131 |
-
features = []
|
132 |
-
for layer in self.layers:
|
133 |
-
s, f = layer(x)
|
134 |
-
score = score + s
|
135 |
-
features.extend(f)
|
136 |
-
x = nn.functional.avg_pool1d(x, 2)
|
137 |
-
return score, features
|
138 |
-
|
139 |
-
class MultiPeriodDiscriminator(nn.Module):
|
140 |
-
|
141 |
-
def __init__(self,
|
142 |
-
in_channels: int,
|
143 |
-
periods: tp.Sequence[int],
|
144 |
-
**conv_kwargs) -> None:
|
145 |
-
super().__init__()
|
146 |
-
layers = []
|
147 |
-
self.periods = periods
|
148 |
-
|
149 |
-
for _ in periods:
|
150 |
-
layers.append(SharedDiscriminatorConvNet(in_channels, nn.Conv2d, **conv_kwargs))
|
151 |
-
|
152 |
-
self.layers = nn.ModuleList(layers)
|
153 |
-
|
154 |
-
def forward(self, x: torch.Tensor) -> IndividualDiscriminatorOut:
|
155 |
-
score = 0
|
156 |
-
features = []
|
157 |
-
for layer, n in zip(self.layers, self.periods):
|
158 |
-
s, f = layer(self.fold(x, n))
|
159 |
-
score = score + s
|
160 |
-
features.extend(f)
|
161 |
-
return score, features
|
162 |
-
|
163 |
-
def fold(self, x: torch.Tensor, n: int) -> torch.Tensor:
|
164 |
-
pad = (n - (x.shape[-1] % n)) % n
|
165 |
-
x = nn.functional.pad(x, (0, pad))
|
166 |
-
return x.reshape(*x.shape[:2], -1, n)
|
167 |
-
|
168 |
-
|
169 |
-
class MultiDiscriminator(nn.Module):
|
170 |
-
"""
|
171 |
-
Individual discriminators should take a single tensor as input (NxB C T) and
|
172 |
-
return a tuple composed of a score tensor (NxB) and a Sequence of Features
|
173 |
-
Sequence[NxB C' T'].
|
174 |
-
"""
|
175 |
-
|
176 |
-
def __init__(self, discriminator_list: tp.Sequence[nn.Module],
|
177 |
-
keys: tp.Sequence[str]) -> None:
|
178 |
-
super().__init__()
|
179 |
-
self.discriminators = nn.ModuleList(discriminator_list)
|
180 |
-
self.keys = keys
|
181 |
-
|
182 |
-
def unpack_tensor_to_dict(self, features: torch.Tensor) -> TensorDict:
|
183 |
-
features = features.chunk(len(self.keys), 0)
|
184 |
-
return {k: features[i] for i, k in enumerate(self.keys)}
|
185 |
-
|
186 |
-
@staticmethod
|
187 |
-
def concat_dicts(dict_a, dict_b):
|
188 |
-
out_dict = {}
|
189 |
-
keys = set(list(dict_a.keys()) + list(dict_b.keys()))
|
190 |
-
for k in keys:
|
191 |
-
out_dict[k] = []
|
192 |
-
if k in dict_a:
|
193 |
-
if isinstance(dict_a[k], list):
|
194 |
-
out_dict[k].extend(dict_a[k])
|
195 |
-
else:
|
196 |
-
out_dict[k].append(dict_a[k])
|
197 |
-
if k in dict_b:
|
198 |
-
if isinstance(dict_b[k], list):
|
199 |
-
out_dict[k].extend(dict_b[k])
|
200 |
-
else:
|
201 |
-
out_dict[k].append(dict_b[k])
|
202 |
-
return out_dict
|
203 |
-
|
204 |
-
@staticmethod
|
205 |
-
def sum_dicts(dict_a, dict_b):
|
206 |
-
out_dict = {}
|
207 |
-
keys = set(list(dict_a.keys()) + list(dict_b.keys()))
|
208 |
-
for k in keys:
|
209 |
-
out_dict[k] = 0.
|
210 |
-
if k in dict_a:
|
211 |
-
out_dict[k] = out_dict[k] + dict_a[k]
|
212 |
-
if k in dict_b:
|
213 |
-
out_dict[k] = out_dict[k] + dict_b[k]
|
214 |
-
return out_dict
|
215 |
-
|
216 |
-
def forward(self, inputs: TensorDict) -> TensorDict:
|
217 |
-
discriminator_input = torch.cat([inputs[k] for k in self.keys], 0)
|
218 |
-
all_scores = []
|
219 |
-
all_features = []
|
220 |
-
|
221 |
-
for discriminator in self.discriminators:
|
222 |
-
score, features = discriminator(discriminator_input)
|
223 |
-
scores = self.unpack_tensor_to_dict(score)
|
224 |
-
scores = {f"score_{k}": scores[k] for k in scores.keys()}
|
225 |
-
all_scores.append(scores)
|
226 |
-
|
227 |
-
features = map(self.unpack_tensor_to_dict, features)
|
228 |
-
features = reduce(self.concat_dicts, features)
|
229 |
-
features = {f"features_{k}": features[k] for k in features.keys()}
|
230 |
-
all_features.append(features)
|
231 |
-
|
232 |
-
all_scores = reduce(self.sum_dicts, all_scores)
|
233 |
-
all_features = reduce(self.concat_dicts, all_features)
|
234 |
-
|
235 |
-
inputs.update(all_scores)
|
236 |
-
inputs.update(all_features)
|
237 |
-
|
238 |
-
return inputs
|
239 |
-
|
240 |
-
class OobleckDiscriminator(nn.Module):
|
241 |
-
|
242 |
-
def __init__(
|
243 |
-
self,
|
244 |
-
in_channels=1,
|
245 |
-
):
|
246 |
-
super().__init__()
|
247 |
-
|
248 |
-
multi_scale_discriminator = MultiScaleDiscriminator(
|
249 |
-
in_channels=in_channels,
|
250 |
-
n_scales=3,
|
251 |
-
)
|
252 |
-
|
253 |
-
multi_period_discriminator = MultiPeriodDiscriminator(
|
254 |
-
in_channels=in_channels,
|
255 |
-
periods=[2, 3, 5, 7, 11]
|
256 |
-
)
|
257 |
-
|
258 |
-
# multi_resolution_discriminator = MultiScaleSTFTDiscriminator(
|
259 |
-
# filters=32,
|
260 |
-
# in_channels = in_channels,
|
261 |
-
# out_channels = 1,
|
262 |
-
# n_ffts = [2048, 1024, 512, 256, 128],
|
263 |
-
# hop_lengths = [512, 256, 128, 64, 32],
|
264 |
-
# win_lengths = [2048, 1024, 512, 256, 128]
|
265 |
-
# )
|
266 |
-
|
267 |
-
self.multi_discriminator = MultiDiscriminator(
|
268 |
-
[multi_scale_discriminator, multi_period_discriminator], #, multi_resolution_discriminator],
|
269 |
-
["reals", "fakes"]
|
270 |
-
)
|
271 |
-
|
272 |
-
def loss(self, reals, fakes):
|
273 |
-
inputs = {
|
274 |
-
"reals": reals,
|
275 |
-
"fakes": fakes,
|
276 |
-
}
|
277 |
-
|
278 |
-
inputs = self.multi_discriminator(inputs)
|
279 |
-
|
280 |
-
scores_real = inputs["score_reals"]
|
281 |
-
scores_fake = inputs["score_fakes"]
|
282 |
-
|
283 |
-
features_real = inputs["features_reals"]
|
284 |
-
features_fake = inputs["features_fakes"]
|
285 |
-
|
286 |
-
dis_loss, gen_loss = get_hinge_losses(scores_real, scores_fake)
|
287 |
-
|
288 |
-
feature_matching_distance = torch.tensor(0.)
|
289 |
-
|
290 |
-
for _, (scale_real, scale_fake) in enumerate(zip(features_real, features_fake)):
|
291 |
-
|
292 |
-
feature_matching_distance = feature_matching_distance + sum(
|
293 |
-
map(
|
294 |
-
lambda real, fake: abs(real - fake).mean(),
|
295 |
-
scale_real,
|
296 |
-
scale_fake,
|
297 |
-
)) / len(scale_real)
|
298 |
-
|
299 |
-
return dis_loss, gen_loss, feature_matching_distance
|
300 |
-
|
301 |
-
|
302 |
-
## Discriminators from Descript Audio Codec repo
|
303 |
-
## Copied and modified under MIT license, see LICENSES/LICENSE_DESCRIPT.txt
|
304 |
-
class MPD(nn.Module):
|
305 |
-
def __init__(self, period, channels=1):
|
306 |
-
super().__init__()
|
307 |
-
|
308 |
-
self.period = period
|
309 |
-
self.convs = nn.ModuleList(
|
310 |
-
[
|
311 |
-
WNConv2d(channels, 32, (5, 1), (3, 1), padding=(2, 0)),
|
312 |
-
WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
|
313 |
-
WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
|
314 |
-
WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
|
315 |
-
WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
|
316 |
-
]
|
317 |
-
)
|
318 |
-
self.conv_post = WNConv2d(
|
319 |
-
1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
|
320 |
-
)
|
321 |
-
|
322 |
-
def pad_to_period(self, x):
|
323 |
-
t = x.shape[-1]
|
324 |
-
x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
|
325 |
-
return x
|
326 |
-
|
327 |
-
def forward(self, x):
|
328 |
-
fmap = []
|
329 |
-
|
330 |
-
x = self.pad_to_period(x)
|
331 |
-
x = rearrange(x, "b c (l p) -> b c l p", p=self.period)
|
332 |
-
|
333 |
-
for layer in self.convs:
|
334 |
-
x = layer(x)
|
335 |
-
fmap.append(x)
|
336 |
-
|
337 |
-
x = self.conv_post(x)
|
338 |
-
fmap.append(x)
|
339 |
-
|
340 |
-
return fmap
|
341 |
-
|
342 |
-
|
343 |
-
class MSD(nn.Module):
|
344 |
-
def __init__(self, rate: int = 1, sample_rate: int = 44100, channels=1):
|
345 |
-
super().__init__()
|
346 |
-
|
347 |
-
self.convs = nn.ModuleList(
|
348 |
-
[
|
349 |
-
WNConv1d(channels, 16, 15, 1, padding=7),
|
350 |
-
WNConv1d(16, 64, 41, 4, groups=4, padding=20),
|
351 |
-
WNConv1d(64, 256, 41, 4, groups=16, padding=20),
|
352 |
-
WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
|
353 |
-
WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
|
354 |
-
WNConv1d(1024, 1024, 5, 1, padding=2),
|
355 |
-
]
|
356 |
-
)
|
357 |
-
self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
|
358 |
-
self.sample_rate = sample_rate
|
359 |
-
self.rate = rate
|
360 |
-
|
361 |
-
def forward(self, x):
|
362 |
-
x = AudioSignal(x, self.sample_rate)
|
363 |
-
x.resample(self.sample_rate // self.rate)
|
364 |
-
x = x.audio_data
|
365 |
-
|
366 |
-
fmap = []
|
367 |
-
|
368 |
-
for l in self.convs:
|
369 |
-
x = l(x)
|
370 |
-
fmap.append(x)
|
371 |
-
x = self.conv_post(x)
|
372 |
-
fmap.append(x)
|
373 |
-
|
374 |
-
return fmap
|
375 |
-
|
376 |
-
|
377 |
-
BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]
|
378 |
-
|
379 |
-
|
380 |
-
class MRD(nn.Module):
|
381 |
-
def __init__(
|
382 |
-
self,
|
383 |
-
window_length: int,
|
384 |
-
hop_factor: float = 0.25,
|
385 |
-
sample_rate: int = 44100,
|
386 |
-
bands: list = BANDS,
|
387 |
-
channels: int = 1
|
388 |
-
):
|
389 |
-
"""Complex multi-band spectrogram discriminator.
|
390 |
-
Parameters
|
391 |
-
----------
|
392 |
-
window_length : int
|
393 |
-
Window length of STFT.
|
394 |
-
hop_factor : float, optional
|
395 |
-
Hop factor of the STFT, defaults to ``0.25 * window_length``.
|
396 |
-
sample_rate : int, optional
|
397 |
-
Sampling rate of audio in Hz, by default 44100
|
398 |
-
bands : list, optional
|
399 |
-
Bands to run discriminator over.
|
400 |
-
"""
|
401 |
-
super().__init__()
|
402 |
-
|
403 |
-
self.window_length = window_length
|
404 |
-
self.hop_factor = hop_factor
|
405 |
-
self.sample_rate = sample_rate
|
406 |
-
self.stft_params = STFTParams(
|
407 |
-
window_length=window_length,
|
408 |
-
hop_length=int(window_length * hop_factor),
|
409 |
-
match_stride=True,
|
410 |
-
)
|
411 |
-
|
412 |
-
self.channels = channels
|
413 |
-
|
414 |
-
n_fft = window_length // 2 + 1
|
415 |
-
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
|
416 |
-
self.bands = bands
|
417 |
-
|
418 |
-
ch = 32
|
419 |
-
convs = lambda: nn.ModuleList(
|
420 |
-
[
|
421 |
-
WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
|
422 |
-
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
423 |
-
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
424 |
-
WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
|
425 |
-
WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
|
426 |
-
]
|
427 |
-
)
|
428 |
-
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
|
429 |
-
self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)
|
430 |
-
|
431 |
-
def spectrogram(self, x):
|
432 |
-
x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
|
433 |
-
x = torch.view_as_real(x.stft())
|
434 |
-
x = rearrange(x, "b ch f t c -> (b ch) c t f", ch=self.channels)
|
435 |
-
# Split into bands
|
436 |
-
x_bands = [x[..., b[0] : b[1]] for b in self.bands]
|
437 |
-
return x_bands
|
438 |
-
|
439 |
-
def forward(self, x):
|
440 |
-
x_bands = self.spectrogram(x)
|
441 |
-
fmap = []
|
442 |
-
|
443 |
-
x = []
|
444 |
-
for band, stack in zip(x_bands, self.band_convs):
|
445 |
-
for layer in stack:
|
446 |
-
band = layer(band)
|
447 |
-
fmap.append(band)
|
448 |
-
x.append(band)
|
449 |
-
|
450 |
-
x = torch.cat(x, dim=-1)
|
451 |
-
x = self.conv_post(x)
|
452 |
-
fmap.append(x)
|
453 |
-
|
454 |
-
return fmap
|
455 |
-
|
456 |
-
|
457 |
-
class DACDiscriminator(nn.Module):
|
458 |
-
def __init__(
|
459 |
-
self,
|
460 |
-
channels: int = 1,
|
461 |
-
rates: list = [],
|
462 |
-
periods: list = [2, 3, 5, 7, 11],
|
463 |
-
fft_sizes: list = [2048, 1024, 512],
|
464 |
-
sample_rate: int = 44100,
|
465 |
-
bands: list = BANDS,
|
466 |
-
):
|
467 |
-
"""Discriminator that combines multiple discriminators.
|
468 |
-
|
469 |
-
Parameters
|
470 |
-
----------
|
471 |
-
rates : list, optional
|
472 |
-
sampling rates (in Hz) to run MSD at, by default []
|
473 |
-
If empty, MSD is not used.
|
474 |
-
periods : list, optional
|
475 |
-
periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
|
476 |
-
fft_sizes : list, optional
|
477 |
-
Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
|
478 |
-
sample_rate : int, optional
|
479 |
-
Sampling rate of audio in Hz, by default 44100
|
480 |
-
bands : list, optional
|
481 |
-
Bands to run MRD at, by default `BANDS`
|
482 |
-
"""
|
483 |
-
super().__init__()
|
484 |
-
discs = []
|
485 |
-
discs += [MPD(p, channels=channels) for p in periods]
|
486 |
-
discs += [MSD(r, sample_rate=sample_rate, channels=channels) for r in rates]
|
487 |
-
discs += [MRD(f, sample_rate=sample_rate, bands=bands, channels=channels) for f in fft_sizes]
|
488 |
-
self.discriminators = nn.ModuleList(discs)
|
489 |
-
|
490 |
-
def preprocess(self, y):
|
491 |
-
# Remove DC offset
|
492 |
-
y = y - y.mean(dim=-1, keepdims=True)
|
493 |
-
# Peak normalize the volume of input audio
|
494 |
-
y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
|
495 |
-
return y
|
496 |
-
|
497 |
-
def forward(self, x):
|
498 |
-
x = self.preprocess(x)
|
499 |
-
fmaps = [d(x) for d in self.discriminators]
|
500 |
-
return fmaps
|
501 |
-
|
502 |
-
class DACGANLoss(nn.Module):
|
503 |
-
"""
|
504 |
-
Computes a discriminator loss, given a discriminator on
|
505 |
-
generated waveforms/spectrograms compared to ground truth
|
506 |
-
waveforms/spectrograms. Computes the loss for both the
|
507 |
-
discriminator and the generator in separate functions.
|
508 |
-
"""
|
509 |
-
|
510 |
-
def __init__(self, **discriminator_kwargs):
|
511 |
-
super().__init__()
|
512 |
-
self.discriminator = DACDiscriminator(**discriminator_kwargs)
|
513 |
-
|
514 |
-
def forward(self, fake, real):
|
515 |
-
d_fake = self.discriminator(fake)
|
516 |
-
d_real = self.discriminator(real)
|
517 |
-
return d_fake, d_real
|
518 |
-
|
519 |
-
def discriminator_loss(self, fake, real):
|
520 |
-
d_fake, d_real = self.forward(fake.clone().detach(), real)
|
521 |
-
|
522 |
-
loss_d = 0
|
523 |
-
for x_fake, x_real in zip(d_fake, d_real):
|
524 |
-
loss_d += torch.mean(x_fake[-1] ** 2)
|
525 |
-
loss_d += torch.mean((1 - x_real[-1]) ** 2)
|
526 |
-
return loss_d
|
527 |
-
|
528 |
-
def generator_loss(self, fake, real):
|
529 |
-
d_fake, d_real = self.forward(fake, real)
|
530 |
-
|
531 |
-
loss_g = 0
|
532 |
-
for x_fake in d_fake:
|
533 |
-
loss_g += torch.mean((1 - x_fake[-1]) ** 2)
|
534 |
-
|
535 |
-
loss_feature = 0
|
536 |
-
|
537 |
-
for i in range(len(d_fake)):
|
538 |
-
for j in range(len(d_fake[i]) - 1):
|
539 |
-
loss_feature += F.l1_loss(d_fake[i][j], d_real[i][j].detach())
|
540 |
-
return loss_g, loss_feature
|
541 |
-
|
542 |
-
def loss(self, fake, real):
|
543 |
-
gen_loss, feature_distance = self.generator_loss(fake, real)
|
544 |
-
dis_loss = self.discriminator_loss(fake, real)
|
545 |
-
|
546 |
-
return dis_loss, gen_loss, feature_distance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/dit.py
DELETED
@@ -1,379 +0,0 @@
|
|
1 |
-
import typing as tp
|
2 |
-
|
3 |
-
import torch
|
4 |
-
|
5 |
-
from einops import rearrange
|
6 |
-
from torch import nn
|
7 |
-
from torch.nn import functional as F
|
8 |
-
from x_transformers import ContinuousTransformerWrapper, Encoder
|
9 |
-
|
10 |
-
from .blocks import FourierFeatures
|
11 |
-
from .transformer import ContinuousTransformer
|
12 |
-
|
13 |
-
class DiffusionTransformer(nn.Module):
|
14 |
-
def __init__(self,
|
15 |
-
io_channels=32,
|
16 |
-
patch_size=1,
|
17 |
-
embed_dim=768,
|
18 |
-
cond_token_dim=0,
|
19 |
-
project_cond_tokens=True,
|
20 |
-
global_cond_dim=0,
|
21 |
-
project_global_cond=True,
|
22 |
-
input_concat_dim=0,
|
23 |
-
prepend_cond_dim=0,
|
24 |
-
depth=12,
|
25 |
-
num_heads=8,
|
26 |
-
transformer_type: tp.Literal["x-transformers", "continuous_transformer"] = "x-transformers",
|
27 |
-
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
|
28 |
-
**kwargs):
|
29 |
-
|
30 |
-
super().__init__()
|
31 |
-
|
32 |
-
self.cond_token_dim = cond_token_dim
|
33 |
-
|
34 |
-
# Timestep embeddings
|
35 |
-
timestep_features_dim = 256
|
36 |
-
|
37 |
-
self.timestep_features = FourierFeatures(1, timestep_features_dim)
|
38 |
-
|
39 |
-
self.to_timestep_embed = nn.Sequential(
|
40 |
-
nn.Linear(timestep_features_dim, embed_dim, bias=True),
|
41 |
-
nn.SiLU(),
|
42 |
-
nn.Linear(embed_dim, embed_dim, bias=True),
|
43 |
-
)
|
44 |
-
|
45 |
-
if cond_token_dim > 0:
|
46 |
-
# Conditioning tokens
|
47 |
-
|
48 |
-
cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
|
49 |
-
self.to_cond_embed = nn.Sequential(
|
50 |
-
nn.Linear(cond_token_dim, cond_embed_dim, bias=False),
|
51 |
-
nn.SiLU(),
|
52 |
-
nn.Linear(cond_embed_dim, cond_embed_dim, bias=False)
|
53 |
-
)
|
54 |
-
else:
|
55 |
-
cond_embed_dim = 0
|
56 |
-
|
57 |
-
if global_cond_dim > 0:
|
58 |
-
# Global conditioning
|
59 |
-
global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
|
60 |
-
self.to_global_embed = nn.Sequential(
|
61 |
-
nn.Linear(global_cond_dim, global_embed_dim, bias=False),
|
62 |
-
nn.SiLU(),
|
63 |
-
nn.Linear(global_embed_dim, global_embed_dim, bias=False)
|
64 |
-
)
|
65 |
-
|
66 |
-
if prepend_cond_dim > 0:
|
67 |
-
# Prepend conditioning
|
68 |
-
self.to_prepend_embed = nn.Sequential(
|
69 |
-
nn.Linear(prepend_cond_dim, embed_dim, bias=False),
|
70 |
-
nn.SiLU(),
|
71 |
-
nn.Linear(embed_dim, embed_dim, bias=False)
|
72 |
-
)
|
73 |
-
|
74 |
-
self.input_concat_dim = input_concat_dim
|
75 |
-
|
76 |
-
dim_in = io_channels + self.input_concat_dim
|
77 |
-
|
78 |
-
self.patch_size = patch_size
|
79 |
-
|
80 |
-
# Transformer
|
81 |
-
|
82 |
-
self.transformer_type = transformer_type
|
83 |
-
|
84 |
-
self.global_cond_type = global_cond_type
|
85 |
-
|
86 |
-
if self.transformer_type == "x-transformers":
|
87 |
-
self.transformer = ContinuousTransformerWrapper(
|
88 |
-
dim_in=dim_in * patch_size,
|
89 |
-
dim_out=io_channels * patch_size,
|
90 |
-
max_seq_len=0, #Not relevant without absolute positional embeds
|
91 |
-
attn_layers = Encoder(
|
92 |
-
dim=embed_dim,
|
93 |
-
depth=depth,
|
94 |
-
heads=num_heads,
|
95 |
-
attn_flash = True,
|
96 |
-
cross_attend = cond_token_dim > 0,
|
97 |
-
dim_context=None if cond_embed_dim == 0 else cond_embed_dim,
|
98 |
-
zero_init_branch_output=True,
|
99 |
-
use_abs_pos_emb = False,
|
100 |
-
rotary_pos_emb=True,
|
101 |
-
ff_swish = True,
|
102 |
-
ff_glu = True,
|
103 |
-
**kwargs
|
104 |
-
)
|
105 |
-
)
|
106 |
-
|
107 |
-
elif self.transformer_type == "continuous_transformer":
|
108 |
-
|
109 |
-
global_dim = None
|
110 |
-
|
111 |
-
if self.global_cond_type == "adaLN":
|
112 |
-
# The global conditioning is projected to the embed_dim already at this point
|
113 |
-
global_dim = embed_dim
|
114 |
-
|
115 |
-
self.transformer = ContinuousTransformer(
|
116 |
-
dim=embed_dim,
|
117 |
-
depth=depth,
|
118 |
-
dim_heads=embed_dim // num_heads,
|
119 |
-
dim_in=dim_in * patch_size,
|
120 |
-
dim_out=io_channels * patch_size,
|
121 |
-
cross_attend = cond_token_dim > 0,
|
122 |
-
cond_token_dim = cond_embed_dim,
|
123 |
-
global_cond_dim=global_dim,
|
124 |
-
**kwargs
|
125 |
-
)
|
126 |
-
|
127 |
-
else:
|
128 |
-
raise ValueError(f"Unknown transformer type: {self.transformer_type}")
|
129 |
-
|
130 |
-
self.preprocess_conv = nn.Conv1d(dim_in, dim_in, 1, bias=False)
|
131 |
-
nn.init.zeros_(self.preprocess_conv.weight)
|
132 |
-
self.postprocess_conv = nn.Conv1d(io_channels, io_channels, 1, bias=False)
|
133 |
-
nn.init.zeros_(self.postprocess_conv.weight)
|
134 |
-
|
135 |
-
def _forward(
|
136 |
-
self,
|
137 |
-
x,
|
138 |
-
t,
|
139 |
-
mask=None,
|
140 |
-
cross_attn_cond=None,
|
141 |
-
cross_attn_cond_mask=None,
|
142 |
-
input_concat_cond=None,
|
143 |
-
global_embed=None,
|
144 |
-
prepend_cond=None,
|
145 |
-
prepend_cond_mask=None,
|
146 |
-
return_info=False,
|
147 |
-
**kwargs):
|
148 |
-
|
149 |
-
if cross_attn_cond is not None:
|
150 |
-
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
|
151 |
-
|
152 |
-
if global_embed is not None:
|
153 |
-
# Project the global conditioning to the embedding dimension
|
154 |
-
global_embed = self.to_global_embed(global_embed)
|
155 |
-
|
156 |
-
prepend_inputs = None
|
157 |
-
prepend_mask = None
|
158 |
-
prepend_length = 0
|
159 |
-
if prepend_cond is not None:
|
160 |
-
# Project the prepend conditioning to the embedding dimension
|
161 |
-
prepend_cond = self.to_prepend_embed(prepend_cond)
|
162 |
-
|
163 |
-
prepend_inputs = prepend_cond
|
164 |
-
if prepend_cond_mask is not None:
|
165 |
-
prepend_mask = prepend_cond_mask
|
166 |
-
|
167 |
-
if input_concat_cond is not None:
|
168 |
-
|
169 |
-
# Interpolate input_concat_cond to the same length as x
|
170 |
-
if input_concat_cond.shape[2] != x.shape[2]:
|
171 |
-
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
|
172 |
-
|
173 |
-
x = torch.cat([x, input_concat_cond], dim=1)
|
174 |
-
|
175 |
-
# Get the batch of timestep embeddings
|
176 |
-
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim)
|
177 |
-
|
178 |
-
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
|
179 |
-
if global_embed is not None:
|
180 |
-
global_embed = global_embed + timestep_embed
|
181 |
-
else:
|
182 |
-
global_embed = timestep_embed
|
183 |
-
|
184 |
-
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
|
185 |
-
if self.global_cond_type == "prepend":
|
186 |
-
if prepend_inputs is None:
|
187 |
-
# Prepend inputs are just the global embed, and the mask is all ones
|
188 |
-
prepend_inputs = global_embed.unsqueeze(1)
|
189 |
-
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
|
190 |
-
else:
|
191 |
-
# Prepend inputs are the prepend conditioning + the global embed
|
192 |
-
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
|
193 |
-
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)
|
194 |
-
|
195 |
-
prepend_length = prepend_inputs.shape[1]
|
196 |
-
|
197 |
-
x = self.preprocess_conv(x) + x
|
198 |
-
|
199 |
-
x = rearrange(x, "b c t -> b t c")
|
200 |
-
|
201 |
-
extra_args = {}
|
202 |
-
|
203 |
-
if self.global_cond_type == "adaLN":
|
204 |
-
extra_args["global_cond"] = global_embed
|
205 |
-
|
206 |
-
if self.patch_size > 1:
|
207 |
-
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
|
208 |
-
|
209 |
-
if self.transformer_type == "x-transformers":
|
210 |
-
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs)
|
211 |
-
elif self.transformer_type == "continuous_transformer":
|
212 |
-
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs)
|
213 |
-
|
214 |
-
if return_info:
|
215 |
-
output, info = output
|
216 |
-
elif self.transformer_type == "mm_transformer":
|
217 |
-
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs)
|
218 |
-
|
219 |
-
output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]
|
220 |
-
|
221 |
-
if self.patch_size > 1:
|
222 |
-
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
|
223 |
-
|
224 |
-
output = self.postprocess_conv(output) + output
|
225 |
-
|
226 |
-
if return_info:
|
227 |
-
return output, info
|
228 |
-
|
229 |
-
return output
|
230 |
-
|
231 |
-
def forward(
|
232 |
-
self,
|
233 |
-
x,
|
234 |
-
t,
|
235 |
-
cross_attn_cond=None,
|
236 |
-
cross_attn_cond_mask=None,
|
237 |
-
negative_cross_attn_cond=None,
|
238 |
-
negative_cross_attn_mask=None,
|
239 |
-
input_concat_cond=None,
|
240 |
-
global_embed=None,
|
241 |
-
negative_global_embed=None,
|
242 |
-
prepend_cond=None,
|
243 |
-
prepend_cond_mask=None,
|
244 |
-
cfg_scale=1.0,
|
245 |
-
cfg_dropout_prob=0.0,
|
246 |
-
causal=False,
|
247 |
-
scale_phi=0.0,
|
248 |
-
mask=None,
|
249 |
-
return_info=False,
|
250 |
-
**kwargs):
|
251 |
-
|
252 |
-
assert causal == False, "Causal mode is not supported for DiffusionTransformer"
|
253 |
-
|
254 |
-
if cross_attn_cond_mask is not None:
|
255 |
-
cross_attn_cond_mask = cross_attn_cond_mask.bool()
|
256 |
-
|
257 |
-
cross_attn_cond_mask = None # Temporarily disabling conditioning masks due to kernel issue for flash attention
|
258 |
-
|
259 |
-
if prepend_cond_mask is not None:
|
260 |
-
prepend_cond_mask = prepend_cond_mask.bool()
|
261 |
-
|
262 |
-
# CFG dropout
|
263 |
-
if cfg_dropout_prob > 0.0:
|
264 |
-
if cross_attn_cond is not None:
|
265 |
-
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
266 |
-
dropout_mask = torch.bernoulli(torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(torch.bool)
|
267 |
-
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)
|
268 |
-
|
269 |
-
if prepend_cond is not None:
|
270 |
-
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
271 |
-
dropout_mask = torch.bernoulli(torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(torch.bool)
|
272 |
-
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)
|
273 |
-
|
274 |
-
|
275 |
-
if cfg_scale != 1.0 and (cross_attn_cond is not None or prepend_cond is not None):
|
276 |
-
# Classifier-free guidance
|
277 |
-
# Concatenate conditioned and unconditioned inputs on the batch dimension
|
278 |
-
batch_inputs = torch.cat([x, x], dim=0)
|
279 |
-
batch_timestep = torch.cat([t, t], dim=0)
|
280 |
-
|
281 |
-
if global_embed is not None:
|
282 |
-
batch_global_cond = torch.cat([global_embed, global_embed], dim=0)
|
283 |
-
else:
|
284 |
-
batch_global_cond = None
|
285 |
-
|
286 |
-
if input_concat_cond is not None:
|
287 |
-
batch_input_concat_cond = torch.cat([input_concat_cond, input_concat_cond], dim=0)
|
288 |
-
else:
|
289 |
-
batch_input_concat_cond = None
|
290 |
-
|
291 |
-
batch_cond = None
|
292 |
-
batch_cond_masks = None
|
293 |
-
|
294 |
-
# Handle CFG for cross-attention conditioning
|
295 |
-
if cross_attn_cond is not None:
|
296 |
-
|
297 |
-
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
298 |
-
|
299 |
-
# For negative cross-attention conditioning, replace the null embed with the negative cross-attention conditioning
|
300 |
-
if negative_cross_attn_cond is not None:
|
301 |
-
|
302 |
-
# If there's a negative cross-attention mask, set the masked tokens to the null embed
|
303 |
-
if negative_cross_attn_mask is not None:
|
304 |
-
negative_cross_attn_mask = negative_cross_attn_mask.to(torch.bool).unsqueeze(2)
|
305 |
-
|
306 |
-
negative_cross_attn_cond = torch.where(negative_cross_attn_mask, negative_cross_attn_cond, null_embed)
|
307 |
-
|
308 |
-
batch_cond = torch.cat([cross_attn_cond, negative_cross_attn_cond], dim=0)
|
309 |
-
|
310 |
-
else:
|
311 |
-
batch_cond = torch.cat([cross_attn_cond, null_embed], dim=0)
|
312 |
-
|
313 |
-
if cross_attn_cond_mask is not None:
|
314 |
-
batch_cond_masks = torch.cat([cross_attn_cond_mask, cross_attn_cond_mask], dim=0)
|
315 |
-
|
316 |
-
batch_prepend_cond = None
|
317 |
-
batch_prepend_cond_mask = None
|
318 |
-
|
319 |
-
if prepend_cond is not None:
|
320 |
-
|
321 |
-
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
322 |
-
|
323 |
-
batch_prepend_cond = torch.cat([prepend_cond, null_embed], dim=0)
|
324 |
-
|
325 |
-
if prepend_cond_mask is not None:
|
326 |
-
batch_prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)
|
327 |
-
|
328 |
-
|
329 |
-
if mask is not None:
|
330 |
-
batch_masks = torch.cat([mask, mask], dim=0)
|
331 |
-
else:
|
332 |
-
batch_masks = None
|
333 |
-
|
334 |
-
batch_output = self._forward(
|
335 |
-
batch_inputs,
|
336 |
-
batch_timestep,
|
337 |
-
cross_attn_cond=batch_cond,
|
338 |
-
cross_attn_cond_mask=batch_cond_masks,
|
339 |
-
mask = batch_masks,
|
340 |
-
input_concat_cond=batch_input_concat_cond,
|
341 |
-
global_embed = batch_global_cond,
|
342 |
-
prepend_cond = batch_prepend_cond,
|
343 |
-
prepend_cond_mask = batch_prepend_cond_mask,
|
344 |
-
return_info = return_info,
|
345 |
-
**kwargs)
|
346 |
-
|
347 |
-
if return_info:
|
348 |
-
batch_output, info = batch_output
|
349 |
-
|
350 |
-
cond_output, uncond_output = torch.chunk(batch_output, 2, dim=0)
|
351 |
-
cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale
|
352 |
-
|
353 |
-
# CFG Rescale
|
354 |
-
if scale_phi != 0.0:
|
355 |
-
cond_out_std = cond_output.std(dim=1, keepdim=True)
|
356 |
-
out_cfg_std = cfg_output.std(dim=1, keepdim=True)
|
357 |
-
output = scale_phi * (cfg_output * (cond_out_std/out_cfg_std)) + (1-scale_phi) * cfg_output
|
358 |
-
else:
|
359 |
-
output = cfg_output
|
360 |
-
|
361 |
-
if return_info:
|
362 |
-
return output, info
|
363 |
-
|
364 |
-
return output
|
365 |
-
|
366 |
-
else:
|
367 |
-
return self._forward(
|
368 |
-
x,
|
369 |
-
t,
|
370 |
-
cross_attn_cond=cross_attn_cond,
|
371 |
-
cross_attn_cond_mask=cross_attn_cond_mask,
|
372 |
-
input_concat_cond=input_concat_cond,
|
373 |
-
global_embed=global_embed,
|
374 |
-
prepend_cond=prepend_cond,
|
375 |
-
prepend_cond_mask=prepend_cond_mask,
|
376 |
-
mask=mask,
|
377 |
-
return_info=return_info,
|
378 |
-
**kwargs
|
379 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/factory.py
DELETED
@@ -1,153 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
def create_model_from_config(model_config):
|
4 |
-
model_type = model_config.get('model_type', None)
|
5 |
-
|
6 |
-
assert model_type is not None, 'model_type must be specified in model config'
|
7 |
-
|
8 |
-
if model_type == 'autoencoder':
|
9 |
-
from .autoencoders import create_autoencoder_from_config
|
10 |
-
return create_autoencoder_from_config(model_config)
|
11 |
-
elif model_type == 'diffusion_uncond':
|
12 |
-
from .diffusion import create_diffusion_uncond_from_config
|
13 |
-
return create_diffusion_uncond_from_config(model_config)
|
14 |
-
elif model_type == 'diffusion_cond' or model_type == 'diffusion_cond_inpaint' or model_type == "diffusion_prior":
|
15 |
-
from .diffusion import create_diffusion_cond_from_config
|
16 |
-
return create_diffusion_cond_from_config(model_config)
|
17 |
-
elif model_type == 'diffusion_autoencoder':
|
18 |
-
from .autoencoders import create_diffAE_from_config
|
19 |
-
return create_diffAE_from_config(model_config)
|
20 |
-
elif model_type == 'lm':
|
21 |
-
from .lm import create_audio_lm_from_config
|
22 |
-
return create_audio_lm_from_config(model_config)
|
23 |
-
else:
|
24 |
-
raise NotImplementedError(f'Unknown model type: {model_type}')
|
25 |
-
|
26 |
-
def create_model_from_config_path(model_config_path):
|
27 |
-
with open(model_config_path) as f:
|
28 |
-
model_config = json.load(f)
|
29 |
-
|
30 |
-
return create_model_from_config(model_config)
|
31 |
-
|
32 |
-
def create_pretransform_from_config(pretransform_config, sample_rate):
|
33 |
-
pretransform_type = pretransform_config.get('type', None)
|
34 |
-
|
35 |
-
assert pretransform_type is not None, 'type must be specified in pretransform config'
|
36 |
-
|
37 |
-
if pretransform_type == 'autoencoder':
|
38 |
-
from .autoencoders import create_autoencoder_from_config
|
39 |
-
from .pretransforms import AutoencoderPretransform
|
40 |
-
|
41 |
-
# Create fake top-level config to pass sample rate to autoencoder constructor
|
42 |
-
# This is a bit of a hack but it keeps us from re-defining the sample rate in the config
|
43 |
-
autoencoder_config = {"sample_rate": sample_rate, "model": pretransform_config["config"]}
|
44 |
-
autoencoder = create_autoencoder_from_config(autoencoder_config)
|
45 |
-
|
46 |
-
scale = pretransform_config.get("scale", 1.0)
|
47 |
-
model_half = pretransform_config.get("model_half", False)
|
48 |
-
iterate_batch = pretransform_config.get("iterate_batch", False)
|
49 |
-
chunked = pretransform_config.get("chunked", False)
|
50 |
-
|
51 |
-
pretransform = AutoencoderPretransform(autoencoder, scale=scale, model_half=model_half, iterate_batch=iterate_batch, chunked=chunked)
|
52 |
-
elif pretransform_type == 'wavelet':
|
53 |
-
from .pretransforms import WaveletPretransform
|
54 |
-
|
55 |
-
wavelet_config = pretransform_config["config"]
|
56 |
-
channels = wavelet_config["channels"]
|
57 |
-
levels = wavelet_config["levels"]
|
58 |
-
wavelet = wavelet_config["wavelet"]
|
59 |
-
|
60 |
-
pretransform = WaveletPretransform(channels, levels, wavelet)
|
61 |
-
elif pretransform_type == 'pqmf':
|
62 |
-
from .pretransforms import PQMFPretransform
|
63 |
-
pqmf_config = pretransform_config["config"]
|
64 |
-
pretransform = PQMFPretransform(**pqmf_config)
|
65 |
-
elif pretransform_type == 'dac_pretrained':
|
66 |
-
from .pretransforms import PretrainedDACPretransform
|
67 |
-
pretrained_dac_config = pretransform_config["config"]
|
68 |
-
pretransform = PretrainedDACPretransform(**pretrained_dac_config)
|
69 |
-
elif pretransform_type == "audiocraft_pretrained":
|
70 |
-
from .pretransforms import AudiocraftCompressionPretransform
|
71 |
-
|
72 |
-
audiocraft_config = pretransform_config["config"]
|
73 |
-
pretransform = AudiocraftCompressionPretransform(**audiocraft_config)
|
74 |
-
else:
|
75 |
-
raise NotImplementedError(f'Unknown pretransform type: {pretransform_type}')
|
76 |
-
|
77 |
-
enable_grad = pretransform_config.get('enable_grad', False)
|
78 |
-
pretransform.enable_grad = enable_grad
|
79 |
-
|
80 |
-
pretransform.eval().requires_grad_(pretransform.enable_grad)
|
81 |
-
|
82 |
-
return pretransform
|
83 |
-
|
84 |
-
def create_bottleneck_from_config(bottleneck_config):
|
85 |
-
bottleneck_type = bottleneck_config.get('type', None)
|
86 |
-
|
87 |
-
assert bottleneck_type is not None, 'type must be specified in bottleneck config'
|
88 |
-
|
89 |
-
if bottleneck_type == 'tanh':
|
90 |
-
from .bottleneck import TanhBottleneck
|
91 |
-
bottleneck = TanhBottleneck()
|
92 |
-
elif bottleneck_type == 'vae':
|
93 |
-
from .bottleneck import VAEBottleneck
|
94 |
-
bottleneck = VAEBottleneck()
|
95 |
-
elif bottleneck_type == 'rvq':
|
96 |
-
from .bottleneck import RVQBottleneck
|
97 |
-
|
98 |
-
quantizer_params = {
|
99 |
-
"dim": 128,
|
100 |
-
"codebook_size": 1024,
|
101 |
-
"num_quantizers": 8,
|
102 |
-
"decay": 0.99,
|
103 |
-
"kmeans_init": True,
|
104 |
-
"kmeans_iters": 50,
|
105 |
-
"threshold_ema_dead_code": 2,
|
106 |
-
}
|
107 |
-
|
108 |
-
quantizer_params.update(bottleneck_config["config"])
|
109 |
-
|
110 |
-
bottleneck = RVQBottleneck(**quantizer_params)
|
111 |
-
elif bottleneck_type == "dac_rvq":
|
112 |
-
from .bottleneck import DACRVQBottleneck
|
113 |
-
|
114 |
-
bottleneck = DACRVQBottleneck(**bottleneck_config["config"])
|
115 |
-
|
116 |
-
elif bottleneck_type == 'rvq_vae':
|
117 |
-
from .bottleneck import RVQVAEBottleneck
|
118 |
-
|
119 |
-
quantizer_params = {
|
120 |
-
"dim": 128,
|
121 |
-
"codebook_size": 1024,
|
122 |
-
"num_quantizers": 8,
|
123 |
-
"decay": 0.99,
|
124 |
-
"kmeans_init": True,
|
125 |
-
"kmeans_iters": 50,
|
126 |
-
"threshold_ema_dead_code": 2,
|
127 |
-
}
|
128 |
-
|
129 |
-
quantizer_params.update(bottleneck_config["config"])
|
130 |
-
|
131 |
-
bottleneck = RVQVAEBottleneck(**quantizer_params)
|
132 |
-
|
133 |
-
elif bottleneck_type == 'dac_rvq_vae':
|
134 |
-
from .bottleneck import DACRVQVAEBottleneck
|
135 |
-
bottleneck = DACRVQVAEBottleneck(**bottleneck_config["config"])
|
136 |
-
elif bottleneck_type == 'l2_norm':
|
137 |
-
from .bottleneck import L2Bottleneck
|
138 |
-
bottleneck = L2Bottleneck()
|
139 |
-
elif bottleneck_type == "wasserstein":
|
140 |
-
from .bottleneck import WassersteinBottleneck
|
141 |
-
bottleneck = WassersteinBottleneck(**bottleneck_config.get("config", {}))
|
142 |
-
elif bottleneck_type == "fsq":
|
143 |
-
from .bottleneck import FSQBottleneck
|
144 |
-
bottleneck = FSQBottleneck(**bottleneck_config["config"])
|
145 |
-
else:
|
146 |
-
raise NotImplementedError(f'Unknown bottleneck type: {bottleneck_type}')
|
147 |
-
|
148 |
-
requires_grad = bottleneck_config.get('requires_grad', True)
|
149 |
-
if not requires_grad:
|
150 |
-
for param in bottleneck.parameters():
|
151 |
-
param.requires_grad = False
|
152 |
-
|
153 |
-
return bottleneck
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/lm.py
DELETED
@@ -1,541 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
import torch
|
3 |
-
from tqdm.auto import trange
|
4 |
-
import typing as tp
|
5 |
-
from einops import rearrange
|
6 |
-
from torch import nn
|
7 |
-
|
8 |
-
from .conditioners import MultiConditioner, create_multi_conditioner_from_conditioning_config
|
9 |
-
from .factory import create_pretransform_from_config
|
10 |
-
from .lm_backbone import AudioLMBackbone, XTransformersAudioLMBackbone, ContinuousTransformerAudioLMBackbone
|
11 |
-
from .pretransforms import Pretransform, AutoencoderPretransform, PretrainedDACPretransform, AudiocraftCompressionPretransform
|
12 |
-
from .utils import multinomial, sample_top_k, sample_top_p
|
13 |
-
|
14 |
-
from .codebook_patterns import (
|
15 |
-
CodebooksPatternProvider,
|
16 |
-
DelayedPatternProvider,
|
17 |
-
MusicLMPattern,
|
18 |
-
ParallelPatternProvider,
|
19 |
-
UnrolledPatternProvider
|
20 |
-
)
|
21 |
-
|
22 |
-
# Copied and modified from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/models/lm.py under MIT license
|
23 |
-
# License can be found in LICENSES/LICENSE_META.txt
|
24 |
-
|
25 |
-
@dataclass
|
26 |
-
class LMOutput:
|
27 |
-
# The logits are already re-aligned with the input codes
|
28 |
-
# hence no extra shift is required, e.g. when computing CE
|
29 |
-
logits: torch.Tensor # [B, K, T, card]
|
30 |
-
mask: torch.Tensor # [B, K, T]
|
31 |
-
|
32 |
-
# Wrapper for a multi-codebook language model
|
33 |
-
# Handles patterns and quantizer heads
|
34 |
-
class AudioLanguageModel(nn.Module):
|
35 |
-
def __init__(
|
36 |
-
self,
|
37 |
-
pattern_provider: CodebooksPatternProvider,
|
38 |
-
backbone: AudioLMBackbone,
|
39 |
-
num_quantizers: int,
|
40 |
-
codebook_size: int
|
41 |
-
):
|
42 |
-
super().__init__()
|
43 |
-
|
44 |
-
self.pattern_provider = pattern_provider
|
45 |
-
self.backbone = backbone
|
46 |
-
self.num_quantizers = num_quantizers
|
47 |
-
self.codebook_size = codebook_size
|
48 |
-
|
49 |
-
self.masked_token_id = codebook_size
|
50 |
-
|
51 |
-
# Per-quantizer embedders
|
52 |
-
# Add one for the mask embed
|
53 |
-
self.embeds = nn.ModuleList([nn.Embedding(codebook_size + 1, backbone.embed_dim) for _ in range(num_quantizers)])
|
54 |
-
|
55 |
-
# Per-quantizer output heads
|
56 |
-
self.quantizer_heads = nn.ModuleList([
|
57 |
-
nn.Linear(backbone.embed_dim, codebook_size) for _ in range(num_quantizers)
|
58 |
-
])
|
59 |
-
|
60 |
-
def forward(self,
|
61 |
-
sequence: torch.Tensor, #[batch, seq_len,
|
62 |
-
prepend_cond=None, #[batch, seq, channels]
|
63 |
-
prepend_cond_mask=None,
|
64 |
-
cross_attn_cond=None, #[batch, seq, channels],
|
65 |
-
**kwargs
|
66 |
-
):
|
67 |
-
|
68 |
-
batch, num_quantizers, seq_len = sequence.shape
|
69 |
-
|
70 |
-
assert num_quantizers == self.num_quantizers, "Number of quantizers in sequence must match number of quantizers in model"
|
71 |
-
|
72 |
-
backbone_input = sum([self.embeds[i](sequence[:, i]) for i in range(num_quantizers)]) # [batch, seq_len, embed_dim]
|
73 |
-
|
74 |
-
dtype = next(self.parameters()).dtype
|
75 |
-
|
76 |
-
if cross_attn_cond is not None:
|
77 |
-
cross_attn_cond = cross_attn_cond.to(dtype)
|
78 |
-
|
79 |
-
if prepend_cond is not None:
|
80 |
-
prepend_cond = prepend_cond.to(dtype)
|
81 |
-
|
82 |
-
if prepend_cond_mask is not None:
|
83 |
-
prepend_cond_mask = prepend_cond_mask.to(dtype)
|
84 |
-
|
85 |
-
backbone_input = backbone_input.to(dtype)
|
86 |
-
|
87 |
-
output = self.backbone(
|
88 |
-
backbone_input,
|
89 |
-
cross_attn_cond=cross_attn_cond,
|
90 |
-
prepend_cond=prepend_cond,
|
91 |
-
prepend_cond_mask=prepend_cond_mask,
|
92 |
-
**kwargs
|
93 |
-
) # [batch, seq_len, embed_dim]
|
94 |
-
|
95 |
-
# Run output through quantizer heads
|
96 |
-
logits = torch.stack([self.quantizer_heads[i](output) for i in range(num_quantizers)], dim=1) # [batch, num_quantizers, seq_len, codebook_size]
|
97 |
-
|
98 |
-
return logits
|
99 |
-
|
100 |
-
def compute_logits(
|
101 |
-
self,
|
102 |
-
codes, #[batch, num_quantizers, seq_len]
|
103 |
-
**kwargs):
|
104 |
-
"""
|
105 |
-
Compute logits for a batch of codes, optionally conditioning on cross-attention and prepend conditioning
|
106 |
-
Handles translation between input sequence and pattern-shifted sequence
|
107 |
-
Only used during training
|
108 |
-
"""
|
109 |
-
|
110 |
-
batch, _, seq_len = codes.shape
|
111 |
-
|
112 |
-
pattern = self.pattern_provider.get_pattern(seq_len)
|
113 |
-
|
114 |
-
# Apply the token pattern to the codes, shifting the codes as needed and masking out invalid steps
|
115 |
-
shifted_codes, _, _ = pattern.build_pattern_sequence(
|
116 |
-
codes,
|
117 |
-
self.masked_token_id,
|
118 |
-
keep_only_valid_steps=True
|
119 |
-
)
|
120 |
-
|
121 |
-
# Run the model to get logits for each quantizer [batch, num_quantizers, seq_len, codebook_size]
|
122 |
-
logits = self(shifted_codes, **kwargs)
|
123 |
-
|
124 |
-
# Rearrange logits to prepare to revert pattern
|
125 |
-
logits = rearrange(logits, "b n s c -> b c n s")
|
126 |
-
|
127 |
-
# Revert sequence logits back to original sequence length, removing masked steps
|
128 |
-
logits, _, logits_mask = pattern.revert_pattern_logits(
|
129 |
-
logits, float('nan'), keep_only_valid_steps=True
|
130 |
-
)
|
131 |
-
|
132 |
-
logits = rearrange(logits, "b c n t -> b n t c")
|
133 |
-
|
134 |
-
logits_mask = logits_mask[None, :, :].expand(batch, -1, -1) # [batch, num_quantizers, seq_len]
|
135 |
-
|
136 |
-
return LMOutput(logits=logits, mask=logits_mask)
|
137 |
-
|
138 |
-
# Conditioning and generation wrapper for a multi-codebook language model
|
139 |
-
# Handles conditioning, CFG, generation, and encoding/decoding
|
140 |
-
class AudioLanguageModelWrapper(nn.Module):
|
141 |
-
def __init__(
|
142 |
-
self,
|
143 |
-
pretransform: Pretransform,
|
144 |
-
lm: AudioLanguageModel,
|
145 |
-
sample_rate: int,
|
146 |
-
min_input_length: int,
|
147 |
-
conditioner: MultiConditioner = None,
|
148 |
-
cross_attn_cond_ids: tp.List[str] = [],
|
149 |
-
prepend_cond_ids: tp.List[str] = [],
|
150 |
-
global_cond_ids: tp.List[str] = []
|
151 |
-
):
|
152 |
-
super().__init__()
|
153 |
-
|
154 |
-
assert pretransform.is_discrete, "Pretransform must be discrete"
|
155 |
-
self.pretransform = pretransform
|
156 |
-
|
157 |
-
self.pretransform.requires_grad_(False)
|
158 |
-
self.pretransform.eval()
|
159 |
-
|
160 |
-
if isinstance(self.pretransform, AutoencoderPretransform):
|
161 |
-
self.num_quantizers = self.pretransform.model.bottleneck.num_quantizers
|
162 |
-
self.codebook_size = self.pretransform.model.bottleneck.codebook_size
|
163 |
-
elif isinstance(self.pretransform, PretrainedDACPretransform):
|
164 |
-
self.num_quantizers = self.pretransform.model.num_quantizers
|
165 |
-
self.codebook_size = self.pretransform.model.codebook_size
|
166 |
-
elif isinstance(self.pretransform, AudiocraftCompressionPretransform):
|
167 |
-
self.num_quantizers = self.pretransform.num_quantizers
|
168 |
-
self.codebook_size = self.pretransform.codebook_size
|
169 |
-
else:
|
170 |
-
raise NotImplementedError(f"Unrecognized pretransform type {type(self.pretransform)}")
|
171 |
-
|
172 |
-
self.conditioner = conditioner
|
173 |
-
|
174 |
-
self.lm = lm
|
175 |
-
|
176 |
-
self.sample_rate = sample_rate
|
177 |
-
self.min_input_length = min_input_length
|
178 |
-
|
179 |
-
self.cross_attn_cond_ids = cross_attn_cond_ids
|
180 |
-
self.prepend_cond_ids = prepend_cond_ids
|
181 |
-
self.global_cond_ids = global_cond_ids
|
182 |
-
|
183 |
-
def get_conditioning_inputs(self, cond: tp.Dict[str, tp.Any], negative=False):
|
184 |
-
cross_attention_input = None
|
185 |
-
prepend_cond = None
|
186 |
-
prepend_cond_mask = None
|
187 |
-
global_cond = None
|
188 |
-
|
189 |
-
if len(self.cross_attn_cond_ids) > 0:
|
190 |
-
# Concatenate all cross-attention inputs over the sequence dimension
|
191 |
-
# Assumes that the cross-attention inputs are of shape (batch, seq, channels)
|
192 |
-
cross_attention_input = torch.cat([cond[key][0] for key in self.cross_attn_cond_ids], dim=1)
|
193 |
-
|
194 |
-
if len(self.prepend_cond_ids) > 0:
|
195 |
-
# Concatenate all prepend conditioning inputs over the sequence dimension
|
196 |
-
# Assumes that the prepend conditioning inputs are of shape (batch, seq, channels)
|
197 |
-
prepend_cond = torch.cat([cond[key][0] for key in self.prepend_cond_ids], dim=1)
|
198 |
-
prepend_cond_mask = torch.cat([cond[key][1] for key in self.prepend_cond_ids], dim=1)
|
199 |
-
|
200 |
-
if len(self.global_cond_ids) > 0:
|
201 |
-
# Concatenate all global conditioning inputs over the channel dimension
|
202 |
-
# Assumes that the global conditioning inputs are of shape (batch, channels)
|
203 |
-
global_cond = torch.cat([cond[key][0] for key in self.global_cond_ids], dim=-1)
|
204 |
-
if len(global_cond.shape) == 3:
|
205 |
-
global_cond = global_cond.squeeze(1)
|
206 |
-
|
207 |
-
if negative:
|
208 |
-
return {
|
209 |
-
"negative_cross_attn_cond": cross_attention_input,
|
210 |
-
"negative_prepend_cond": prepend_cond,
|
211 |
-
"negative_prepend_cond_mask": prepend_cond_mask,
|
212 |
-
"negative_global_cond": global_cond
|
213 |
-
}
|
214 |
-
else:
|
215 |
-
return {
|
216 |
-
"cross_attn_cond": cross_attention_input,
|
217 |
-
"prepend_cond": prepend_cond,
|
218 |
-
"prepend_cond_mask": prepend_cond_mask,
|
219 |
-
"global_cond": global_cond
|
220 |
-
}
|
221 |
-
|
222 |
-
def compute_logits(
|
223 |
-
self,
|
224 |
-
codes,
|
225 |
-
condition_tensors=None,
|
226 |
-
cfg_dropout_prob=0.0,
|
227 |
-
**kwargs
|
228 |
-
):
|
229 |
-
"""
|
230 |
-
Compute logits for a batch of codes, and translates from conditioning inputs to model inputs
|
231 |
-
Handles CFG dropout
|
232 |
-
"""
|
233 |
-
|
234 |
-
if condition_tensors is None:
|
235 |
-
condition_tensors = {}
|
236 |
-
|
237 |
-
conditioning_inputs = self.get_conditioning_inputs(condition_tensors)
|
238 |
-
|
239 |
-
cross_attn_cond = conditioning_inputs["cross_attn_cond"]
|
240 |
-
prepend_cond = conditioning_inputs["prepend_cond"]
|
241 |
-
prepend_cond_mask = conditioning_inputs["prepend_cond_mask"]
|
242 |
-
global_cond = conditioning_inputs["global_cond"]
|
243 |
-
|
244 |
-
if cfg_dropout_prob > 0.0:
|
245 |
-
if cross_attn_cond is not None:
|
246 |
-
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
247 |
-
dropout_mask = torch.bernoulli(torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(torch.bool)
|
248 |
-
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)
|
249 |
-
|
250 |
-
if prepend_cond is not None:
|
251 |
-
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
252 |
-
dropout_mask = torch.bernoulli(torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(torch.bool)
|
253 |
-
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)
|
254 |
-
|
255 |
-
if global_cond is not None:
|
256 |
-
null_embed = torch.zeros_like(global_cond, device=global_cond.device)
|
257 |
-
dropout_mask = torch.bernoulli(torch.full((global_cond.shape[0], 1), cfg_dropout_prob, device=global_cond.device)).to(torch.bool)
|
258 |
-
global_cond = torch.where(dropout_mask, null_embed, global_cond)
|
259 |
-
|
260 |
-
return self.lm.compute_logits(codes, cross_attn_cond=cross_attn_cond, prepend_cond=prepend_cond, prepend_cond_mask=prepend_cond_mask, global_cond=global_cond, **kwargs)
|
261 |
-
|
262 |
-
def _sample_next_token(
|
263 |
-
self,
|
264 |
-
sequence, #[batch, num_quantizers, seq_len]
|
265 |
-
conditioning_tensors=None,
|
266 |
-
cross_attn_use_cfg=True,
|
267 |
-
prepend_use_cfg=True,
|
268 |
-
global_use_cfg=True,
|
269 |
-
cfg_scale=1.0,
|
270 |
-
top_k=250,
|
271 |
-
top_p=0.0,
|
272 |
-
temp=1.0,
|
273 |
-
**kwargs
|
274 |
-
):
|
275 |
-
"""
|
276 |
-
Sample the next token for a batch of codes, and translates from conditioning inputs to model inputs
|
277 |
-
Handles CFG inference
|
278 |
-
"""
|
279 |
-
|
280 |
-
if conditioning_tensors is None:
|
281 |
-
conditioning_tensors = {}
|
282 |
-
|
283 |
-
conditioning_inputs = self.get_conditioning_inputs(conditioning_tensors)
|
284 |
-
|
285 |
-
cross_attn_cond = conditioning_inputs["cross_attn_cond"]
|
286 |
-
prepend_cond = conditioning_inputs["prepend_cond"]
|
287 |
-
prepend_cond_mask = conditioning_inputs["prepend_cond_mask"]
|
288 |
-
global_cond = conditioning_inputs["global_cond"]
|
289 |
-
|
290 |
-
if cfg_scale != 1.0:
|
291 |
-
|
292 |
-
# Batch size is doubled to account for negative samples
|
293 |
-
sequence = torch.cat([sequence, sequence], dim=0)
|
294 |
-
|
295 |
-
if cross_attn_cond is not None and cross_attn_use_cfg:
|
296 |
-
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
297 |
-
|
298 |
-
cross_attn_cond = torch.cat([cross_attn_cond, null_embed], dim=0)
|
299 |
-
|
300 |
-
if prepend_cond is not None and prepend_use_cfg:
|
301 |
-
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
302 |
-
|
303 |
-
prepend_cond = torch.cat([prepend_cond, null_embed], dim=0)
|
304 |
-
|
305 |
-
if prepend_cond_mask is not None:
|
306 |
-
prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)
|
307 |
-
|
308 |
-
if global_cond is not None and global_use_cfg:
|
309 |
-
null_embed = torch.zeros_like(global_cond, device=global_cond.device)
|
310 |
-
|
311 |
-
global_cond = torch.cat([global_cond, null_embed], dim=0)
|
312 |
-
|
313 |
-
logits = self.lm(sequence, cross_attn_cond=cross_attn_cond, prepend_cond=prepend_cond, prepend_cond_mask=prepend_cond_mask, global_cond=global_cond, **kwargs)
|
314 |
-
|
315 |
-
if cfg_scale != 1.0:
|
316 |
-
cond_logits, uncond_logits = logits.chunk(2, dim=0)
|
317 |
-
|
318 |
-
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_scale
|
319 |
-
|
320 |
-
logits = rearrange(logits, "b n s c -> b n c s") # [batch, num_quantizers, codebook_size, seq_len]
|
321 |
-
|
322 |
-
# Grab the logits for the last step
|
323 |
-
logits = logits[:, :, :, -1] # [batch, num_quantizers, codebook_size]
|
324 |
-
|
325 |
-
# Apply top-k or top-p sampling
|
326 |
-
|
327 |
-
if temp > 0:
|
328 |
-
probs = torch.softmax(logits / temp, dim=-1)
|
329 |
-
|
330 |
-
if top_p > 0.0:
|
331 |
-
next_token = sample_top_p(probs, p=top_p)
|
332 |
-
elif top_k > 0:
|
333 |
-
next_token = sample_top_k(probs, k=top_k)
|
334 |
-
else:
|
335 |
-
next_token = multinomial(probs, num_samples=1)
|
336 |
-
|
337 |
-
else:
|
338 |
-
next_token = torch.argmax(logits, dim=-1, keepdim=True) # [batch, num_quantizers, 1]
|
339 |
-
|
340 |
-
return next_token
|
341 |
-
|
342 |
-
@torch.no_grad()
|
343 |
-
def generate(
|
344 |
-
self,
|
345 |
-
max_gen_len: int = 256,
|
346 |
-
batch_size: tp.Optional[int] = None,
|
347 |
-
init_data: tp.Optional[torch.Tensor] = None,
|
348 |
-
conditioning: tp.Optional[tp.Dict[str, tp.Any]] = None,
|
349 |
-
conditioning_tensors: tp.Optional[tp.Dict[str, tp.Any]] = None,
|
350 |
-
callback: tp.Optional[tp.Callable[[int, int], None]] = None,
|
351 |
-
use_cache: bool = True,
|
352 |
-
cfg_scale: float = 1.0,
|
353 |
-
**kwargs
|
354 |
-
):
|
355 |
-
device = next(self.parameters()).device
|
356 |
-
|
357 |
-
if conditioning_tensors is None and conditioning is not None:
|
358 |
-
# Convert conditioning inputs to conditioning tensors
|
359 |
-
conditioning_tensors = self.conditioner(conditioning, device)
|
360 |
-
|
361 |
-
# Check that batch size is consistent across inputs
|
362 |
-
possible_batch_sizes = []
|
363 |
-
|
364 |
-
if batch_size is not None:
|
365 |
-
possible_batch_sizes.append(batch_size)
|
366 |
-
elif init_data is not None:
|
367 |
-
possible_batch_sizes.append(init_data.shape[0])
|
368 |
-
elif conditioning_tensors is not None:
|
369 |
-
# Assume that the first conditioning tensor has the batch dimension
|
370 |
-
possible_batch_sizes.append(conditioning_tensors[list(conditioning_tensors.keys())[0]][0].shape[0])
|
371 |
-
else:
|
372 |
-
possible_batch_sizes.append(1)
|
373 |
-
|
374 |
-
assert [x == possible_batch_sizes[0] for x in possible_batch_sizes], "Batch size must be consistent across inputs"
|
375 |
-
|
376 |
-
batch_size = possible_batch_sizes[0]
|
377 |
-
|
378 |
-
if init_data is None:
|
379 |
-
# Initialize with zeros
|
380 |
-
assert batch_size > 0
|
381 |
-
init_data = torch.zeros((batch_size, self.num_quantizers, 0), device=device, dtype=torch.long)
|
382 |
-
|
383 |
-
batch_size, num_quantizers, seq_len = init_data.shape
|
384 |
-
|
385 |
-
start_offset = seq_len
|
386 |
-
assert start_offset < max_gen_len, "init data longer than max gen length"
|
387 |
-
|
388 |
-
pattern = self.lm.pattern_provider.get_pattern(max_gen_len)
|
389 |
-
|
390 |
-
unknown_token = -1
|
391 |
-
|
392 |
-
# Initialize the generated codes with the init data, padded with unknown tokens
|
393 |
-
gen_codes = torch.full((batch_size, num_quantizers, max_gen_len), unknown_token, device=device, dtype=torch.long)
|
394 |
-
gen_codes[:, :, :start_offset] = init_data # [batch, num_quantizers, max_gen_len]
|
395 |
-
|
396 |
-
gen_sequence, _, mask = pattern.build_pattern_sequence(gen_codes, self.lm.masked_token_id) # [batch, num_quantizers, gen_sequence_len]
|
397 |
-
|
398 |
-
start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset)
|
399 |
-
assert start_offset_sequence is not None
|
400 |
-
|
401 |
-
# Generation
|
402 |
-
prev_offset = 0
|
403 |
-
gen_sequence_len = gen_sequence.shape[-1]
|
404 |
-
|
405 |
-
# Reset generation cache
|
406 |
-
if use_cache and self.lm.backbone.use_generation_cache:
|
407 |
-
self.lm.backbone.reset_generation_cache(max_gen_len, batch_size if cfg_scale == 1.0 else batch_size * 2)
|
408 |
-
|
409 |
-
for offset in trange(start_offset_sequence, gen_sequence_len):
|
410 |
-
|
411 |
-
# Get the full sequence up to the current offset
|
412 |
-
curr_sequence = gen_sequence[..., prev_offset:offset]
|
413 |
-
|
414 |
-
next_token = self._sample_next_token(
|
415 |
-
curr_sequence,
|
416 |
-
conditioning_tensors=conditioning_tensors,
|
417 |
-
use_cache=use_cache,
|
418 |
-
cfg_scale=cfg_scale,
|
419 |
-
**kwargs
|
420 |
-
)
|
421 |
-
|
422 |
-
valid_mask = mask[..., offset:offset+1].expand(batch_size, -1, -1)
|
423 |
-
next_token[~valid_mask] = self.lm.masked_token_id
|
424 |
-
|
425 |
-
# Update the generated sequence with the next token
|
426 |
-
gen_sequence[..., offset:offset+1] = torch.where(
|
427 |
-
gen_sequence[..., offset:offset+1] == unknown_token,
|
428 |
-
next_token,
|
429 |
-
gen_sequence[..., offset:offset+1]
|
430 |
-
)
|
431 |
-
|
432 |
-
if use_cache and self.lm.backbone.use_generation_cache:
|
433 |
-
# Only update the offset if caching is being used
|
434 |
-
prev_offset = offset
|
435 |
-
|
436 |
-
self.lm.backbone.update_generation_cache(offset)
|
437 |
-
|
438 |
-
if callback is not None:
|
439 |
-
# Callback to report progress
|
440 |
-
# Pass in the offset relative to the start of the sequence, and the length of the current sequence
|
441 |
-
callback(1 + offset - start_offset_sequence, gen_sequence_len - start_offset_sequence)
|
442 |
-
|
443 |
-
assert not (gen_sequence == unknown_token).any(), "Unknown tokens in generated sequence"
|
444 |
-
|
445 |
-
out_codes, _, out_mask = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token)
|
446 |
-
|
447 |
-
# sanity checks over the returned codes and corresponding masks
|
448 |
-
assert (out_codes[..., :max_gen_len] != unknown_token).all()
|
449 |
-
assert (out_mask[..., :max_gen_len] == 1).all()
|
450 |
-
|
451 |
-
#out_codes = out_codes[..., 0:max_gen_len]
|
452 |
-
|
453 |
-
return out_codes
|
454 |
-
|
455 |
-
|
456 |
-
def generate_audio(
|
457 |
-
self,
|
458 |
-
**kwargs
|
459 |
-
):
|
460 |
-
"""
|
461 |
-
Generate audio from a batch of codes
|
462 |
-
"""
|
463 |
-
|
464 |
-
codes = self.generate(**kwargs)
|
465 |
-
|
466 |
-
audio = self.pretransform.decode_tokens(codes)
|
467 |
-
|
468 |
-
return audio
|
469 |
-
|
470 |
-
|
471 |
-
def create_audio_lm_from_config(config):
|
472 |
-
model_config = config.get('model', None)
|
473 |
-
assert model_config is not None, 'model config must be specified in config'
|
474 |
-
|
475 |
-
sample_rate = config.get('sample_rate', None)
|
476 |
-
assert sample_rate is not None, "Must specify sample_rate in config"
|
477 |
-
|
478 |
-
lm_config = model_config.get('lm', None)
|
479 |
-
assert lm_config is not None, 'lm config must be specified in model config'
|
480 |
-
|
481 |
-
codebook_pattern = lm_config.get("codebook_pattern", "delay")
|
482 |
-
|
483 |
-
pattern_providers = {
|
484 |
-
'parallel': ParallelPatternProvider,
|
485 |
-
'delay': DelayedPatternProvider,
|
486 |
-
'unroll': UnrolledPatternProvider,
|
487 |
-
'musiclm': MusicLMPattern,
|
488 |
-
}
|
489 |
-
|
490 |
-
pretransform_config = model_config.get("pretransform", None)
|
491 |
-
|
492 |
-
pretransform = create_pretransform_from_config(pretransform_config, sample_rate)
|
493 |
-
|
494 |
-
assert pretransform.is_discrete, "Pretransform must be discrete"
|
495 |
-
|
496 |
-
min_input_length = pretransform.downsampling_ratio
|
497 |
-
|
498 |
-
pattern_provider = pattern_providers[codebook_pattern](n_q=pretransform.num_quantizers)
|
499 |
-
|
500 |
-
conditioning_config = model_config.get('conditioning', None)
|
501 |
-
|
502 |
-
conditioner = None
|
503 |
-
if conditioning_config is not None:
|
504 |
-
conditioner = create_multi_conditioner_from_conditioning_config(conditioning_config)
|
505 |
-
|
506 |
-
cross_attn_cond_ids = lm_config.get('cross_attention_cond_ids', [])
|
507 |
-
prepend_cond_ids = lm_config.get('prepend_cond_ids', [])
|
508 |
-
global_cond_ids = lm_config.get('global_cond_ids', [])
|
509 |
-
|
510 |
-
lm_type = lm_config.get("type", None)
|
511 |
-
lm_model_config = lm_config.get("config", None)
|
512 |
-
|
513 |
-
assert lm_type is not None, "Must specify lm type in lm config"
|
514 |
-
assert lm_model_config is not None, "Must specify lm model config in lm config"
|
515 |
-
|
516 |
-
if lm_type == "x-transformers":
|
517 |
-
backbone = XTransformersAudioLMBackbone(**lm_model_config)
|
518 |
-
elif lm_type == "continuous_transformer":
|
519 |
-
backbone = ContinuousTransformerAudioLMBackbone(**lm_model_config)
|
520 |
-
else:
|
521 |
-
raise NotImplementedError(f"Unrecognized lm type {lm_type}")
|
522 |
-
|
523 |
-
lm = AudioLanguageModel(
|
524 |
-
pattern_provider=pattern_provider,
|
525 |
-
backbone=backbone,
|
526 |
-
num_quantizers=pretransform.num_quantizers,
|
527 |
-
codebook_size=pretransform.codebook_size
|
528 |
-
)
|
529 |
-
|
530 |
-
model = AudioLanguageModelWrapper(
|
531 |
-
pretransform=pretransform,
|
532 |
-
lm=lm,
|
533 |
-
conditioner=conditioner,
|
534 |
-
sample_rate=sample_rate,
|
535 |
-
min_input_length=min_input_length,
|
536 |
-
cross_attn_cond_ids=cross_attn_cond_ids,
|
537 |
-
prepend_cond_ids=prepend_cond_ids,
|
538 |
-
global_cond_ids=global_cond_ids
|
539 |
-
)
|
540 |
-
|
541 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/lm_backbone.py
DELETED
@@ -1,159 +0,0 @@
|
|
1 |
-
from torch import nn
|
2 |
-
from x_transformers import ContinuousTransformerWrapper, Decoder
|
3 |
-
|
4 |
-
from .transformer import ContinuousTransformer
|
5 |
-
|
6 |
-
# Interface for backbone of a language model
|
7 |
-
# Handles conditioning and cross-attention
|
8 |
-
# Does not have to deal with patterns or quantizer heads
|
9 |
-
class AudioLMBackbone(nn.Module):
|
10 |
-
def __init__(self, embed_dim: int, use_generation_cache=False, **kwargs):
|
11 |
-
super().__init__()
|
12 |
-
|
13 |
-
self.embed_dim = embed_dim
|
14 |
-
self.use_generation_cache = use_generation_cache
|
15 |
-
|
16 |
-
def forward(
|
17 |
-
self,
|
18 |
-
x,
|
19 |
-
cross_attn_cond=None,
|
20 |
-
prepend_cond=None,
|
21 |
-
prepend_cond_mask=None,
|
22 |
-
global_cond=None,
|
23 |
-
use_cache=False,
|
24 |
-
**kwargs
|
25 |
-
):
|
26 |
-
raise NotImplementedError
|
27 |
-
|
28 |
-
def reset_generation_cache(
|
29 |
-
self,
|
30 |
-
max_seq_len,
|
31 |
-
batch_size,
|
32 |
-
dtype=None
|
33 |
-
):
|
34 |
-
pass
|
35 |
-
|
36 |
-
def update_generation_cache(
|
37 |
-
self,
|
38 |
-
seqlen_offset
|
39 |
-
):
|
40 |
-
pass
|
41 |
-
|
42 |
-
class XTransformersAudioLMBackbone(AudioLMBackbone):
|
43 |
-
def __init__(self,
|
44 |
-
embed_dim: int,
|
45 |
-
cross_attn_cond_dim: int = 0,
|
46 |
-
prepend_cond_dim: int = 0,
|
47 |
-
**kwargs):
|
48 |
-
super().__init__(embed_dim=embed_dim)
|
49 |
-
|
50 |
-
# Embeddings are done in the AudioLanguageModel, so we use the continuous-input transformer
|
51 |
-
self.model = ContinuousTransformerWrapper(
|
52 |
-
dim_in=embed_dim,
|
53 |
-
dim_out=embed_dim,
|
54 |
-
max_seq_len=0, #Not relevant without absolute positional embeds,
|
55 |
-
attn_layers=Decoder(
|
56 |
-
dim=embed_dim,
|
57 |
-
attn_flash = True,
|
58 |
-
cross_attend = cross_attn_cond_dim > 0,
|
59 |
-
zero_init_branch_output=True,
|
60 |
-
use_abs_pos_emb = False,
|
61 |
-
rotary_pos_emb=True,
|
62 |
-
ff_swish = True,
|
63 |
-
ff_glu = True,
|
64 |
-
**kwargs
|
65 |
-
)
|
66 |
-
)
|
67 |
-
|
68 |
-
if prepend_cond_dim > 0:
|
69 |
-
# Prepend conditioning
|
70 |
-
self.to_prepend_embed = nn.Sequential(
|
71 |
-
nn.Linear(prepend_cond_dim, embed_dim, bias=False),
|
72 |
-
nn.SiLU(),
|
73 |
-
nn.Linear(embed_dim, embed_dim, bias=False)
|
74 |
-
)
|
75 |
-
|
76 |
-
if cross_attn_cond_dim > 0:
|
77 |
-
# Cross-attention conditioning
|
78 |
-
self.to_cross_attn_embed = nn.Sequential(
|
79 |
-
nn.Linear(cross_attn_cond_dim, embed_dim, bias=False),
|
80 |
-
nn.SiLU(),
|
81 |
-
nn.Linear(embed_dim, embed_dim, bias=False)
|
82 |
-
)
|
83 |
-
|
84 |
-
def forward(self, x, mask=None, prepend_cond=None, prepend_cond_mask=None, cross_attn_cond=None, global_cond=None, use_cache=False):
|
85 |
-
|
86 |
-
prepend_length = 0
|
87 |
-
if prepend_cond is not None:
|
88 |
-
# Project the prepend conditioning to the embedding dimension
|
89 |
-
prepend_cond = self.to_prepend_embed(prepend_cond)
|
90 |
-
prepend_length = prepend_cond.shape[1]
|
91 |
-
|
92 |
-
if prepend_cond_mask is not None:
|
93 |
-
# Cast mask to bool
|
94 |
-
prepend_cond_mask = prepend_cond_mask.bool()
|
95 |
-
|
96 |
-
if cross_attn_cond is not None:
|
97 |
-
# Project the cross-attention conditioning to the embedding dimension
|
98 |
-
cross_attn_cond = self.to_cross_attn_embed(cross_attn_cond)
|
99 |
-
|
100 |
-
return self.model(x, mask=mask, context=cross_attn_cond, prepend_embeds=prepend_cond, prepend_mask=prepend_cond_mask)[:, prepend_length:, :]
|
101 |
-
|
102 |
-
class ContinuousTransformerAudioLMBackbone(AudioLMBackbone):
|
103 |
-
def __init__(self,
|
104 |
-
embed_dim: int,
|
105 |
-
cross_attn_cond_dim: int = 0,
|
106 |
-
prepend_cond_dim: int = 0,
|
107 |
-
project_cross_attn_cond: bool = False,
|
108 |
-
**kwargs):
|
109 |
-
super().__init__(embed_dim=embed_dim)
|
110 |
-
|
111 |
-
# Embeddings are done in the AudioLanguageModel, so we use the continuous-input transformer
|
112 |
-
self.model = ContinuousTransformer(
|
113 |
-
dim=embed_dim,
|
114 |
-
dim_in=embed_dim,
|
115 |
-
dim_out=embed_dim,
|
116 |
-
cross_attend = cross_attn_cond_dim > 0,
|
117 |
-
cond_token_dim = embed_dim if project_cross_attn_cond else cross_attn_cond_dim,
|
118 |
-
causal=True,
|
119 |
-
**kwargs
|
120 |
-
)
|
121 |
-
|
122 |
-
if prepend_cond_dim > 0:
|
123 |
-
# Prepend conditioning
|
124 |
-
self.to_prepend_embed = nn.Sequential(
|
125 |
-
nn.Linear(prepend_cond_dim, embed_dim, bias=False),
|
126 |
-
nn.SiLU(),
|
127 |
-
nn.Linear(embed_dim, embed_dim, bias=False)
|
128 |
-
)
|
129 |
-
|
130 |
-
if cross_attn_cond_dim > 0 and project_cross_attn_cond:
|
131 |
-
# Cross-attention conditioning
|
132 |
-
self.to_cross_attn_embed = nn.Sequential(
|
133 |
-
nn.Linear(cross_attn_cond_dim, embed_dim, bias=False),
|
134 |
-
nn.SiLU(),
|
135 |
-
nn.Linear(embed_dim, embed_dim, bias=False)
|
136 |
-
)
|
137 |
-
else:
|
138 |
-
self.to_cross_attn_embed = nn.Identity()
|
139 |
-
|
140 |
-
def forward(self, x, mask=None, prepend_cond=None, prepend_cond_mask=None, cross_attn_cond=None, global_cond=None, use_cache=False):
|
141 |
-
|
142 |
-
prepend_length = 0
|
143 |
-
if prepend_cond is not None:
|
144 |
-
# Project the prepend conditioning to the embedding dimension
|
145 |
-
prepend_cond = self.to_prepend_embed(prepend_cond)
|
146 |
-
prepend_length = prepend_cond.shape[1]
|
147 |
-
|
148 |
-
if prepend_cond_mask is not None:
|
149 |
-
# Cast mask to bool
|
150 |
-
prepend_cond_mask = prepend_cond_mask.bool()
|
151 |
-
|
152 |
-
if cross_attn_cond is not None:
|
153 |
-
# Cast cross_attn_cond to same dtype as self.to_cross_attn_embed
|
154 |
-
cross_attn_cond = cross_attn_cond.to(self.to_cross_attn_embed[0].weight.dtype)
|
155 |
-
|
156 |
-
# Project the cross-attention conditioning to the embedding dimension
|
157 |
-
cross_attn_cond = self.to_cross_attn_embed(cross_attn_cond)
|
158 |
-
|
159 |
-
return self.model(x, mask=mask, context=cross_attn_cond, prepend_embeds=prepend_cond, prepend_mask=prepend_cond_mask)[:, prepend_length:, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/local_attention.py
DELETED
@@ -1,278 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
from einops import rearrange
|
4 |
-
from torch import nn
|
5 |
-
|
6 |
-
from .blocks import AdaRMSNorm
|
7 |
-
from .transformer import Attention, FeedForward, RotaryEmbedding, LayerNorm
|
8 |
-
|
9 |
-
def checkpoint(function, *args, **kwargs):
|
10 |
-
kwargs.setdefault("use_reentrant", False)
|
11 |
-
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
12 |
-
|
13 |
-
# Adapted from https://github.com/lucidrains/local-attention/blob/master/local_attention/transformer.py
|
14 |
-
class ContinuousLocalTransformer(nn.Module):
|
15 |
-
def __init__(
|
16 |
-
self,
|
17 |
-
*,
|
18 |
-
dim,
|
19 |
-
depth,
|
20 |
-
dim_in = None,
|
21 |
-
dim_out = None,
|
22 |
-
causal = False,
|
23 |
-
local_attn_window_size = 64,
|
24 |
-
heads = 8,
|
25 |
-
ff_mult = 2,
|
26 |
-
cond_dim = 0,
|
27 |
-
cross_attn_cond_dim = 0,
|
28 |
-
**kwargs
|
29 |
-
):
|
30 |
-
super().__init__()
|
31 |
-
|
32 |
-
dim_head = dim//heads
|
33 |
-
|
34 |
-
self.layers = nn.ModuleList([])
|
35 |
-
|
36 |
-
self.project_in = nn.Linear(dim_in, dim) if dim_in is not None else nn.Identity()
|
37 |
-
|
38 |
-
self.project_out = nn.Linear(dim, dim_out) if dim_out is not None else nn.Identity()
|
39 |
-
|
40 |
-
self.local_attn_window_size = local_attn_window_size
|
41 |
-
|
42 |
-
self.cond_dim = cond_dim
|
43 |
-
|
44 |
-
self.cross_attn_cond_dim = cross_attn_cond_dim
|
45 |
-
|
46 |
-
self.rotary_pos_emb = RotaryEmbedding(max(dim_head // 2, 32))
|
47 |
-
|
48 |
-
for _ in range(depth):
|
49 |
-
|
50 |
-
self.layers.append(nn.ModuleList([
|
51 |
-
AdaRMSNorm(dim, cond_dim, eps=1e-8) if cond_dim > 0 else LayerNorm(dim),
|
52 |
-
Attention(
|
53 |
-
dim=dim,
|
54 |
-
dim_heads=dim_head,
|
55 |
-
causal=causal,
|
56 |
-
zero_init_output=True,
|
57 |
-
natten_kernel_size=local_attn_window_size,
|
58 |
-
),
|
59 |
-
Attention(
|
60 |
-
dim=dim,
|
61 |
-
dim_heads=dim_head,
|
62 |
-
dim_context = cross_attn_cond_dim,
|
63 |
-
zero_init_output=True
|
64 |
-
) if self.cross_attn_cond_dim > 0 else nn.Identity(),
|
65 |
-
AdaRMSNorm(dim, cond_dim, eps=1e-8) if cond_dim > 0 else LayerNorm(dim),
|
66 |
-
FeedForward(dim = dim, mult = ff_mult, no_bias=True)
|
67 |
-
]))
|
68 |
-
|
69 |
-
def forward(self, x, mask = None, cond = None, cross_attn_cond = None, cross_attn_cond_mask = None, prepend_cond = None):
|
70 |
-
|
71 |
-
x = checkpoint(self.project_in, x)
|
72 |
-
|
73 |
-
if prepend_cond is not None:
|
74 |
-
x = torch.cat([prepend_cond, x], dim=1)
|
75 |
-
|
76 |
-
pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
|
77 |
-
|
78 |
-
for attn_norm, attn, xattn, ff_norm, ff in self.layers:
|
79 |
-
|
80 |
-
residual = x
|
81 |
-
if cond is not None:
|
82 |
-
x = checkpoint(attn_norm, x, cond)
|
83 |
-
else:
|
84 |
-
x = checkpoint(attn_norm, x)
|
85 |
-
|
86 |
-
x = checkpoint(attn, x, mask = mask, rotary_pos_emb=pos_emb) + residual
|
87 |
-
|
88 |
-
if cross_attn_cond is not None:
|
89 |
-
x = checkpoint(xattn, x, context=cross_attn_cond, context_mask=cross_attn_cond_mask) + x
|
90 |
-
|
91 |
-
residual = x
|
92 |
-
|
93 |
-
if cond is not None:
|
94 |
-
x = checkpoint(ff_norm, x, cond)
|
95 |
-
else:
|
96 |
-
x = checkpoint(ff_norm, x)
|
97 |
-
|
98 |
-
x = checkpoint(ff, x) + residual
|
99 |
-
|
100 |
-
return checkpoint(self.project_out, x)
|
101 |
-
|
102 |
-
class TransformerDownsampleBlock1D(nn.Module):
|
103 |
-
def __init__(
|
104 |
-
self,
|
105 |
-
in_channels,
|
106 |
-
embed_dim = 768,
|
107 |
-
depth = 3,
|
108 |
-
heads = 12,
|
109 |
-
downsample_ratio = 2,
|
110 |
-
local_attn_window_size = 64,
|
111 |
-
**kwargs
|
112 |
-
):
|
113 |
-
super().__init__()
|
114 |
-
|
115 |
-
self.downsample_ratio = downsample_ratio
|
116 |
-
|
117 |
-
self.transformer = ContinuousLocalTransformer(
|
118 |
-
dim=embed_dim,
|
119 |
-
depth=depth,
|
120 |
-
heads=heads,
|
121 |
-
local_attn_window_size=local_attn_window_size,
|
122 |
-
**kwargs
|
123 |
-
)
|
124 |
-
|
125 |
-
self.project_in = nn.Linear(in_channels, embed_dim, bias=False) if in_channels != embed_dim else nn.Identity()
|
126 |
-
|
127 |
-
self.project_down = nn.Linear(embed_dim * self.downsample_ratio, embed_dim, bias=False)
|
128 |
-
|
129 |
-
|
130 |
-
def forward(self, x):
|
131 |
-
|
132 |
-
x = checkpoint(self.project_in, x)
|
133 |
-
|
134 |
-
# Compute
|
135 |
-
x = self.transformer(x)
|
136 |
-
|
137 |
-
# Trade sequence length for channels
|
138 |
-
x = rearrange(x, "b (n r) c -> b n (c r)", r=self.downsample_ratio)
|
139 |
-
|
140 |
-
# Project back to embed dim
|
141 |
-
x = checkpoint(self.project_down, x)
|
142 |
-
|
143 |
-
return x
|
144 |
-
|
145 |
-
class TransformerUpsampleBlock1D(nn.Module):
|
146 |
-
def __init__(
|
147 |
-
self,
|
148 |
-
in_channels,
|
149 |
-
embed_dim,
|
150 |
-
depth = 3,
|
151 |
-
heads = 12,
|
152 |
-
upsample_ratio = 2,
|
153 |
-
local_attn_window_size = 64,
|
154 |
-
**kwargs
|
155 |
-
):
|
156 |
-
super().__init__()
|
157 |
-
|
158 |
-
self.upsample_ratio = upsample_ratio
|
159 |
-
|
160 |
-
self.transformer = ContinuousLocalTransformer(
|
161 |
-
dim=embed_dim,
|
162 |
-
depth=depth,
|
163 |
-
heads=heads,
|
164 |
-
local_attn_window_size = local_attn_window_size,
|
165 |
-
**kwargs
|
166 |
-
)
|
167 |
-
|
168 |
-
self.project_in = nn.Linear(in_channels, embed_dim, bias=False) if in_channels != embed_dim else nn.Identity()
|
169 |
-
|
170 |
-
self.project_up = nn.Linear(embed_dim, embed_dim * self.upsample_ratio, bias=False)
|
171 |
-
|
172 |
-
def forward(self, x):
|
173 |
-
|
174 |
-
# Project to embed dim
|
175 |
-
x = checkpoint(self.project_in, x)
|
176 |
-
|
177 |
-
# Project to increase channel dim
|
178 |
-
x = checkpoint(self.project_up, x)
|
179 |
-
|
180 |
-
# Trade channels for sequence length
|
181 |
-
x = rearrange(x, "b n (c r) -> b (n r) c", r=self.upsample_ratio)
|
182 |
-
|
183 |
-
# Compute
|
184 |
-
x = self.transformer(x)
|
185 |
-
|
186 |
-
return x
|
187 |
-
|
188 |
-
|
189 |
-
class TransformerEncoder1D(nn.Module):
|
190 |
-
def __init__(
|
191 |
-
self,
|
192 |
-
in_channels,
|
193 |
-
out_channels,
|
194 |
-
embed_dims = [96, 192, 384, 768],
|
195 |
-
heads = [12, 12, 12, 12],
|
196 |
-
depths = [3, 3, 3, 3],
|
197 |
-
ratios = [2, 2, 2, 2],
|
198 |
-
local_attn_window_size = 64,
|
199 |
-
**kwargs
|
200 |
-
):
|
201 |
-
super().__init__()
|
202 |
-
|
203 |
-
layers = []
|
204 |
-
|
205 |
-
for layer in range(len(depths)):
|
206 |
-
prev_dim = embed_dims[layer - 1] if layer > 0 else embed_dims[0]
|
207 |
-
|
208 |
-
layers.append(
|
209 |
-
TransformerDownsampleBlock1D(
|
210 |
-
in_channels = prev_dim,
|
211 |
-
embed_dim = embed_dims[layer],
|
212 |
-
heads = heads[layer],
|
213 |
-
depth = depths[layer],
|
214 |
-
downsample_ratio = ratios[layer],
|
215 |
-
local_attn_window_size = local_attn_window_size,
|
216 |
-
**kwargs
|
217 |
-
)
|
218 |
-
)
|
219 |
-
|
220 |
-
self.layers = nn.Sequential(*layers)
|
221 |
-
|
222 |
-
self.project_in = nn.Linear(in_channels, embed_dims[0], bias=False)
|
223 |
-
self.project_out = nn.Linear(embed_dims[-1], out_channels, bias=False)
|
224 |
-
|
225 |
-
def forward(self, x):
|
226 |
-
x = rearrange(x, "b c n -> b n c")
|
227 |
-
x = checkpoint(self.project_in, x)
|
228 |
-
x = self.layers(x)
|
229 |
-
x = checkpoint(self.project_out, x)
|
230 |
-
x = rearrange(x, "b n c -> b c n")
|
231 |
-
|
232 |
-
return x
|
233 |
-
|
234 |
-
|
235 |
-
class TransformerDecoder1D(nn.Module):
|
236 |
-
def __init__(
|
237 |
-
self,
|
238 |
-
in_channels,
|
239 |
-
out_channels,
|
240 |
-
embed_dims = [768, 384, 192, 96],
|
241 |
-
heads = [12, 12, 12, 12],
|
242 |
-
depths = [3, 3, 3, 3],
|
243 |
-
ratios = [2, 2, 2, 2],
|
244 |
-
local_attn_window_size = 64,
|
245 |
-
**kwargs
|
246 |
-
):
|
247 |
-
|
248 |
-
super().__init__()
|
249 |
-
|
250 |
-
layers = []
|
251 |
-
|
252 |
-
for layer in range(len(depths)):
|
253 |
-
prev_dim = embed_dims[layer - 1] if layer > 0 else embed_dims[0]
|
254 |
-
|
255 |
-
layers.append(
|
256 |
-
TransformerUpsampleBlock1D(
|
257 |
-
in_channels = prev_dim,
|
258 |
-
embed_dim = embed_dims[layer],
|
259 |
-
heads = heads[layer],
|
260 |
-
depth = depths[layer],
|
261 |
-
upsample_ratio = ratios[layer],
|
262 |
-
local_attn_window_size = local_attn_window_size,
|
263 |
-
**kwargs
|
264 |
-
)
|
265 |
-
)
|
266 |
-
|
267 |
-
self.layers = nn.Sequential(*layers)
|
268 |
-
|
269 |
-
self.project_in = nn.Linear(in_channels, embed_dims[0], bias=False)
|
270 |
-
self.project_out = nn.Linear(embed_dims[-1], out_channels, bias=False)
|
271 |
-
|
272 |
-
def forward(self, x):
|
273 |
-
x = rearrange(x, "b c n -> b n c")
|
274 |
-
x = checkpoint(self.project_in, x)
|
275 |
-
x = self.layers(x)
|
276 |
-
x = checkpoint(self.project_out, x)
|
277 |
-
x = rearrange(x, "b n c -> b c n")
|
278 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/pqmf.py
DELETED
@@ -1,393 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
from einops import rearrange
|
6 |
-
from scipy.optimize import fmin
|
7 |
-
from scipy.signal import firwin, kaiser, kaiser_beta, kaiserord
|
8 |
-
|
9 |
-
class PQMF(nn.Module):
|
10 |
-
"""
|
11 |
-
Pseudo Quadrature Mirror Filter (PQMF) for multiband signal decomposition and reconstruction.
|
12 |
-
Uses polyphase representation which is computationally more efficient for real-time.
|
13 |
-
|
14 |
-
Parameters:
|
15 |
-
- attenuation (int): Desired attenuation of the rejected frequency bands, usually between 80 and 120 dB.
|
16 |
-
- num_bands (int): Number of desired frequency bands. It must be a power of 2.
|
17 |
-
"""
|
18 |
-
|
19 |
-
def __init__(self, attenuation, num_bands):
|
20 |
-
super(PQMF, self).__init__()
|
21 |
-
|
22 |
-
# Ensure num_bands is a power of 2
|
23 |
-
is_power_of_2 = (math.log2(num_bands) == int(math.log2(num_bands)))
|
24 |
-
assert is_power_of_2, "'num_bands' must be a power of 2."
|
25 |
-
|
26 |
-
# Create the prototype filter
|
27 |
-
prototype_filter = design_prototype_filter(attenuation, num_bands)
|
28 |
-
filter_bank = generate_modulated_filter_bank(prototype_filter, num_bands)
|
29 |
-
padded_filter_bank = pad_to_nearest_power_of_two(filter_bank)
|
30 |
-
|
31 |
-
# Register filters and settings
|
32 |
-
self.register_buffer("filter_bank", padded_filter_bank)
|
33 |
-
self.register_buffer("prototype", prototype_filter)
|
34 |
-
self.num_bands = num_bands
|
35 |
-
|
36 |
-
def forward(self, signal):
|
37 |
-
"""Decompose the signal into multiple frequency bands."""
|
38 |
-
# If signal is not a pytorch tensor of Batch x Channels x Length, convert it
|
39 |
-
signal = prepare_signal_dimensions(signal)
|
40 |
-
# The signal length must be a multiple of num_bands. Pad it with zeros.
|
41 |
-
signal = pad_signal(signal, self.num_bands)
|
42 |
-
# run it
|
43 |
-
signal = polyphase_analysis(signal, self.filter_bank)
|
44 |
-
return apply_alias_cancellation(signal)
|
45 |
-
|
46 |
-
def inverse(self, bands):
|
47 |
-
"""Reconstruct the original signal from the frequency bands."""
|
48 |
-
bands = apply_alias_cancellation(bands)
|
49 |
-
return polyphase_synthesis(bands, self.filter_bank)
|
50 |
-
|
51 |
-
|
52 |
-
def prepare_signal_dimensions(signal):
|
53 |
-
"""
|
54 |
-
Rearrange signal into Batch x Channels x Length.
|
55 |
-
|
56 |
-
Parameters
|
57 |
-
----------
|
58 |
-
signal : torch.Tensor or numpy.ndarray
|
59 |
-
The input signal.
|
60 |
-
|
61 |
-
Returns
|
62 |
-
-------
|
63 |
-
torch.Tensor
|
64 |
-
Preprocessed signal tensor.
|
65 |
-
"""
|
66 |
-
# Convert numpy to torch tensor
|
67 |
-
if isinstance(signal, np.ndarray):
|
68 |
-
signal = torch.from_numpy(signal)
|
69 |
-
|
70 |
-
# Ensure tensor
|
71 |
-
if not isinstance(signal, torch.Tensor):
|
72 |
-
raise ValueError("Input should be either a numpy array or a PyTorch tensor.")
|
73 |
-
|
74 |
-
# Modify dimension of signal to Batch x Channels x Length
|
75 |
-
if signal.dim() == 1:
|
76 |
-
# This is just a mono signal. Unsqueeze to 1 x 1 x Length
|
77 |
-
signal = signal.unsqueeze(0).unsqueeze(0)
|
78 |
-
elif signal.dim() == 2:
|
79 |
-
# This is a multi-channel signal (e.g. stereo)
|
80 |
-
# Rearrange so that larger dimension (Length) is last
|
81 |
-
if signal.shape[0] > signal.shape[1]:
|
82 |
-
signal = signal.T
|
83 |
-
# Unsqueeze to 1 x Channels x Length
|
84 |
-
signal = signal.unsqueeze(0)
|
85 |
-
return signal
|
86 |
-
|
87 |
-
def pad_signal(signal, num_bands):
|
88 |
-
"""
|
89 |
-
Pads the signal to make its length divisible by the given number of bands.
|
90 |
-
|
91 |
-
Parameters
|
92 |
-
----------
|
93 |
-
signal : torch.Tensor
|
94 |
-
The input signal tensor, where the last dimension represents the signal length.
|
95 |
-
|
96 |
-
num_bands : int
|
97 |
-
The number of bands by which the signal length should be divisible.
|
98 |
-
|
99 |
-
Returns
|
100 |
-
-------
|
101 |
-
torch.Tensor
|
102 |
-
The padded signal tensor. If the original signal length was already divisible
|
103 |
-
by num_bands, returns the original signal unchanged.
|
104 |
-
"""
|
105 |
-
remainder = signal.shape[-1] % num_bands
|
106 |
-
if remainder > 0:
|
107 |
-
padding_size = num_bands - remainder
|
108 |
-
signal = nn.functional.pad(signal, (0, padding_size))
|
109 |
-
return signal
|
110 |
-
|
111 |
-
def generate_modulated_filter_bank(prototype_filter, num_bands):
|
112 |
-
"""
|
113 |
-
Generate a QMF bank of cosine modulated filters based on a given prototype filter.
|
114 |
-
|
115 |
-
Parameters
|
116 |
-
----------
|
117 |
-
prototype_filter : torch.Tensor
|
118 |
-
The prototype filter used as the basis for modulation.
|
119 |
-
num_bands : int
|
120 |
-
The number of desired subbands or filters.
|
121 |
-
|
122 |
-
Returns
|
123 |
-
-------
|
124 |
-
torch.Tensor
|
125 |
-
A bank of cosine modulated filters.
|
126 |
-
"""
|
127 |
-
|
128 |
-
# Initialize indices for modulation.
|
129 |
-
subband_indices = torch.arange(num_bands).reshape(-1, 1)
|
130 |
-
|
131 |
-
# Calculate the length of the prototype filter.
|
132 |
-
filter_length = prototype_filter.shape[-1]
|
133 |
-
|
134 |
-
# Generate symmetric time indices centered around zero.
|
135 |
-
time_indices = torch.arange(-(filter_length // 2), (filter_length // 2) + 1)
|
136 |
-
|
137 |
-
# Calculate phase offsets to ensure orthogonality between subbands.
|
138 |
-
phase_offsets = (-1)**subband_indices * np.pi / 4
|
139 |
-
|
140 |
-
# Compute the cosine modulation function.
|
141 |
-
modulation = torch.cos(
|
142 |
-
(2 * subband_indices + 1) * np.pi / (2 * num_bands) * time_indices + phase_offsets
|
143 |
-
)
|
144 |
-
|
145 |
-
# Apply modulation to the prototype filter.
|
146 |
-
modulated_filters = 2 * prototype_filter * modulation
|
147 |
-
|
148 |
-
return modulated_filters
|
149 |
-
|
150 |
-
|
151 |
-
def design_kaiser_lowpass(angular_cutoff, attenuation, filter_length=None):
|
152 |
-
"""
|
153 |
-
Design a lowpass filter using the Kaiser window.
|
154 |
-
|
155 |
-
Parameters
|
156 |
-
----------
|
157 |
-
angular_cutoff : float
|
158 |
-
The angular frequency cutoff of the filter.
|
159 |
-
attenuation : float
|
160 |
-
The desired stopband attenuation in decibels (dB).
|
161 |
-
filter_length : int, optional
|
162 |
-
Desired length of the filter. If not provided, it's computed based on the given specs.
|
163 |
-
|
164 |
-
Returns
|
165 |
-
-------
|
166 |
-
ndarray
|
167 |
-
The designed lowpass filter coefficients.
|
168 |
-
"""
|
169 |
-
|
170 |
-
estimated_length, beta = kaiserord(attenuation, angular_cutoff / np.pi)
|
171 |
-
|
172 |
-
# Ensure the estimated length is odd.
|
173 |
-
estimated_length = 2 * (estimated_length // 2) + 1
|
174 |
-
|
175 |
-
if filter_length is None:
|
176 |
-
filter_length = estimated_length
|
177 |
-
|
178 |
-
return firwin(filter_length, angular_cutoff, window=('kaiser', beta), scale=False, nyq=np.pi)
|
179 |
-
|
180 |
-
|
181 |
-
def evaluate_filter_objective(angular_cutoff, attenuation, num_bands, filter_length):
|
182 |
-
"""
|
183 |
-
Evaluate the filter's objective value based on the criteria from https://ieeexplore.ieee.org/document/681427
|
184 |
-
|
185 |
-
Parameters
|
186 |
-
----------
|
187 |
-
angular_cutoff : float
|
188 |
-
Angular frequency cutoff of the filter.
|
189 |
-
attenuation : float
|
190 |
-
Desired stopband attenuation in dB.
|
191 |
-
num_bands : int
|
192 |
-
Number of bands for the multiband filter system.
|
193 |
-
filter_length : int, optional
|
194 |
-
Desired length of the filter.
|
195 |
-
|
196 |
-
Returns
|
197 |
-
-------
|
198 |
-
float
|
199 |
-
The computed objective (loss) value for the given filter specs.
|
200 |
-
"""
|
201 |
-
|
202 |
-
filter_coeffs = design_kaiser_lowpass(angular_cutoff, attenuation, filter_length)
|
203 |
-
convolved_filter = np.convolve(filter_coeffs, filter_coeffs[::-1], "full")
|
204 |
-
|
205 |
-
return np.max(np.abs(convolved_filter[convolved_filter.shape[-1] // 2::2 * num_bands][1:]))
|
206 |
-
|
207 |
-
|
208 |
-
def design_prototype_filter(attenuation, num_bands, filter_length=None):
|
209 |
-
"""
|
210 |
-
Design the optimal prototype filter for a multiband system given the desired specs.
|
211 |
-
|
212 |
-
Parameters
|
213 |
-
----------
|
214 |
-
attenuation : float
|
215 |
-
The desired stopband attenuation in dB.
|
216 |
-
num_bands : int
|
217 |
-
Number of bands for the multiband filter system.
|
218 |
-
filter_length : int, optional
|
219 |
-
Desired length of the filter. If not provided, it's computed based on the given specs.
|
220 |
-
|
221 |
-
Returns
|
222 |
-
-------
|
223 |
-
ndarray
|
224 |
-
The optimal prototype filter coefficients.
|
225 |
-
"""
|
226 |
-
|
227 |
-
optimal_angular_cutoff = fmin(lambda angular_cutoff: evaluate_filter_objective(angular_cutoff, attenuation, num_bands, filter_length),
|
228 |
-
1 / num_bands, disp=0)[0]
|
229 |
-
|
230 |
-
prototype_filter = design_kaiser_lowpass(optimal_angular_cutoff, attenuation, filter_length)
|
231 |
-
return torch.tensor(prototype_filter, dtype=torch.float32)
|
232 |
-
|
233 |
-
def pad_to_nearest_power_of_two(x):
|
234 |
-
"""
|
235 |
-
Pads the input tensor 'x' on both sides such that its last dimension
|
236 |
-
becomes the nearest larger power of two.
|
237 |
-
|
238 |
-
Parameters:
|
239 |
-
-----------
|
240 |
-
x : torch.Tensor
|
241 |
-
The input tensor to be padded.
|
242 |
-
|
243 |
-
Returns:
|
244 |
-
--------
|
245 |
-
torch.Tensor
|
246 |
-
The padded tensor.
|
247 |
-
"""
|
248 |
-
current_length = x.shape[-1]
|
249 |
-
target_length = 2**math.ceil(math.log2(current_length))
|
250 |
-
|
251 |
-
total_padding = target_length - current_length
|
252 |
-
left_padding = total_padding // 2
|
253 |
-
right_padding = total_padding - left_padding
|
254 |
-
|
255 |
-
return nn.functional.pad(x, (left_padding, right_padding))
|
256 |
-
|
257 |
-
def apply_alias_cancellation(x):
|
258 |
-
"""
|
259 |
-
Applies alias cancellation by inverting the sign of every
|
260 |
-
second element of every second row, starting from the second
|
261 |
-
row's first element in a tensor.
|
262 |
-
|
263 |
-
This operation helps ensure that the aliasing introduced in
|
264 |
-
each band during the decomposition will be counteracted during
|
265 |
-
the reconstruction.
|
266 |
-
|
267 |
-
Parameters:
|
268 |
-
-----------
|
269 |
-
x : torch.Tensor
|
270 |
-
The input tensor.
|
271 |
-
|
272 |
-
Returns:
|
273 |
-
--------
|
274 |
-
torch.Tensor
|
275 |
-
Tensor with specific elements' sign inverted for alias cancellation.
|
276 |
-
"""
|
277 |
-
|
278 |
-
# Create a mask of the same shape as 'x', initialized with all ones
|
279 |
-
mask = torch.ones_like(x)
|
280 |
-
|
281 |
-
# Update specific elements in the mask to -1 to perform inversion
|
282 |
-
mask[..., 1::2, ::2] = -1
|
283 |
-
|
284 |
-
# Apply the mask to the input tensor 'x'
|
285 |
-
return x * mask
|
286 |
-
|
287 |
-
def ensure_odd_length(tensor):
|
288 |
-
"""
|
289 |
-
Pads the last dimension of a tensor to ensure its size is odd.
|
290 |
-
|
291 |
-
Parameters:
|
292 |
-
-----------
|
293 |
-
tensor : torch.Tensor
|
294 |
-
Input tensor whose last dimension might need padding.
|
295 |
-
|
296 |
-
Returns:
|
297 |
-
--------
|
298 |
-
torch.Tensor
|
299 |
-
The original tensor if its last dimension was already odd,
|
300 |
-
or the padded tensor with an odd-sized last dimension.
|
301 |
-
"""
|
302 |
-
|
303 |
-
last_dim_size = tensor.shape[-1]
|
304 |
-
|
305 |
-
if last_dim_size % 2 == 0:
|
306 |
-
tensor = nn.functional.pad(tensor, (0, 1))
|
307 |
-
|
308 |
-
return tensor
|
309 |
-
|
310 |
-
def polyphase_analysis(signal, filter_bank):
|
311 |
-
"""
|
312 |
-
Applies the polyphase method to efficiently analyze the signal using a filter bank.
|
313 |
-
|
314 |
-
Parameters:
|
315 |
-
-----------
|
316 |
-
signal : torch.Tensor
|
317 |
-
Input signal tensor with shape (Batch x Channels x Length).
|
318 |
-
|
319 |
-
filter_bank : torch.Tensor
|
320 |
-
Filter bank tensor with shape (Bands x Length).
|
321 |
-
|
322 |
-
Returns:
|
323 |
-
--------
|
324 |
-
torch.Tensor
|
325 |
-
Signal split into sub-bands. (Batch x Channels x Bands x Length)
|
326 |
-
"""
|
327 |
-
|
328 |
-
num_bands = filter_bank.shape[0]
|
329 |
-
num_channels = signal.shape[1]
|
330 |
-
|
331 |
-
# Rearrange signal for polyphase processing.
|
332 |
-
# Also combine Batch x Channel into one dimension for now.
|
333 |
-
#signal = rearrange(signal, "b c (t n) -> b (c n) t", n=num_bands)
|
334 |
-
signal = rearrange(signal, "b c (t n) -> (b c) n t", n=num_bands)
|
335 |
-
|
336 |
-
# Rearrange the filter bank for matching signal shape
|
337 |
-
filter_bank = rearrange(filter_bank, "c (t n) -> c n t", n=num_bands)
|
338 |
-
|
339 |
-
# Apply convolution with appropriate padding to maintain spatial dimensions
|
340 |
-
padding = filter_bank.shape[-1] // 2
|
341 |
-
filtered_signal = nn.functional.conv1d(signal, filter_bank, padding=padding)
|
342 |
-
|
343 |
-
# Truncate the last dimension post-convolution to adjust the output shape
|
344 |
-
filtered_signal = filtered_signal[..., :-1]
|
345 |
-
# Rearrange the first dimension back into Batch x Channels
|
346 |
-
filtered_signal = rearrange(filtered_signal, "(b c) n t -> b c n t", c=num_channels)
|
347 |
-
|
348 |
-
return filtered_signal
|
349 |
-
|
350 |
-
def polyphase_synthesis(signal, filter_bank):
|
351 |
-
"""
|
352 |
-
Polyphase Inverse: Apply polyphase filter bank synthesis to reconstruct a signal.
|
353 |
-
|
354 |
-
Parameters
|
355 |
-
----------
|
356 |
-
signal : torch.Tensor
|
357 |
-
Decomposed signal to be reconstructed (shape: Batch x Channels x Bands x Length).
|
358 |
-
|
359 |
-
filter_bank : torch.Tensor
|
360 |
-
Analysis filter bank (shape: Bands x Length).
|
361 |
-
|
362 |
-
should_rearrange : bool, optional
|
363 |
-
Flag to determine if the filters should be rearranged for polyphase synthesis. Default is True.
|
364 |
-
|
365 |
-
Returns
|
366 |
-
-------
|
367 |
-
torch.Tensor
|
368 |
-
Reconstructed signal (shape: Batch x Channels X Length)
|
369 |
-
"""
|
370 |
-
|
371 |
-
num_bands = filter_bank.shape[0]
|
372 |
-
num_channels = signal.shape[1]
|
373 |
-
|
374 |
-
# Rearrange the filter bank
|
375 |
-
filter_bank = filter_bank.flip(-1)
|
376 |
-
filter_bank = rearrange(filter_bank, "c (t n) -> n c t", n=num_bands)
|
377 |
-
|
378 |
-
# Combine Batch x Channels into one dimension for now.
|
379 |
-
signal = rearrange(signal, "b c n t -> (b c) n t")
|
380 |
-
|
381 |
-
# Apply convolution with appropriate padding
|
382 |
-
padding_amount = filter_bank.shape[-1] // 2 + 1
|
383 |
-
reconstructed_signal = nn.functional.conv1d(signal, filter_bank, padding=int(padding_amount))
|
384 |
-
|
385 |
-
# Scale the result
|
386 |
-
reconstructed_signal = reconstructed_signal[..., :-1] * num_bands
|
387 |
-
|
388 |
-
# Reorganize the output and truncate
|
389 |
-
reconstructed_signal = reconstructed_signal.flip(1)
|
390 |
-
reconstructed_signal = rearrange(reconstructed_signal, "(b c) n t -> b c (t n)", c=num_channels, n=num_bands)
|
391 |
-
reconstructed_signal = reconstructed_signal[..., 2 * filter_bank.shape[1]:]
|
392 |
-
|
393 |
-
return reconstructed_signal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/pretrained.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
from .factory import create_model_from_config
|
4 |
-
from .utils import load_ckpt_state_dict
|
5 |
-
|
6 |
-
from huggingface_hub import hf_hub_download
|
7 |
-
|
8 |
-
def get_pretrained_model(name: str):
|
9 |
-
|
10 |
-
model_config_path = hf_hub_download(name, filename="model_config.json", repo_type='model')
|
11 |
-
|
12 |
-
with open(model_config_path) as f:
|
13 |
-
model_config = json.load(f)
|
14 |
-
|
15 |
-
model = create_model_from_config(model_config)
|
16 |
-
|
17 |
-
# Try to download the model.safetensors file first, if it doesn't exist, download the model.ckpt file
|
18 |
-
try:
|
19 |
-
model_ckpt_path = hf_hub_download(name, filename="model.safetensors", repo_type='model')
|
20 |
-
except Exception as e:
|
21 |
-
model_ckpt_path = hf_hub_download(name, filename="model.ckpt", repo_type='model')
|
22 |
-
|
23 |
-
model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))
|
24 |
-
|
25 |
-
return model, model_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/pretransforms.py
DELETED
@@ -1,258 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from einops import rearrange
|
3 |
-
from torch import nn
|
4 |
-
|
5 |
-
class Pretransform(nn.Module):
|
6 |
-
def __init__(self, enable_grad, io_channels, is_discrete):
|
7 |
-
super().__init__()
|
8 |
-
|
9 |
-
self.is_discrete = is_discrete
|
10 |
-
self.io_channels = io_channels
|
11 |
-
self.encoded_channels = None
|
12 |
-
self.downsampling_ratio = None
|
13 |
-
|
14 |
-
self.enable_grad = enable_grad
|
15 |
-
|
16 |
-
def encode(self, x):
|
17 |
-
raise NotImplementedError
|
18 |
-
|
19 |
-
def decode(self, z):
|
20 |
-
raise NotImplementedError
|
21 |
-
|
22 |
-
def tokenize(self, x):
|
23 |
-
raise NotImplementedError
|
24 |
-
|
25 |
-
def decode_tokens(self, tokens):
|
26 |
-
raise NotImplementedError
|
27 |
-
|
28 |
-
class AutoencoderPretransform(Pretransform):
|
29 |
-
def __init__(self, model, scale=1.0, model_half=False, iterate_batch=False, chunked=False):
|
30 |
-
super().__init__(enable_grad=False, io_channels=model.io_channels, is_discrete=model.bottleneck is not None and model.bottleneck.is_discrete)
|
31 |
-
self.model = model
|
32 |
-
self.model.requires_grad_(False).eval()
|
33 |
-
self.scale=scale
|
34 |
-
self.downsampling_ratio = model.downsampling_ratio
|
35 |
-
self.io_channels = model.io_channels
|
36 |
-
self.sample_rate = model.sample_rate
|
37 |
-
|
38 |
-
self.model_half = model_half
|
39 |
-
self.iterate_batch = iterate_batch
|
40 |
-
|
41 |
-
self.encoded_channels = model.latent_dim
|
42 |
-
|
43 |
-
self.chunked = chunked
|
44 |
-
self.num_quantizers = model.bottleneck.num_quantizers if model.bottleneck is not None and model.bottleneck.is_discrete else None
|
45 |
-
self.codebook_size = model.bottleneck.codebook_size if model.bottleneck is not None and model.bottleneck.is_discrete else None
|
46 |
-
|
47 |
-
if self.model_half:
|
48 |
-
self.model.half()
|
49 |
-
|
50 |
-
def encode(self, x, **kwargs):
|
51 |
-
|
52 |
-
if self.model_half:
|
53 |
-
x = x.half()
|
54 |
-
self.model.to(torch.float16)
|
55 |
-
|
56 |
-
encoded = self.model.encode_audio(x, chunked=self.chunked, iterate_batch=self.iterate_batch, **kwargs)
|
57 |
-
|
58 |
-
if self.model_half:
|
59 |
-
encoded = encoded.float()
|
60 |
-
|
61 |
-
return encoded / self.scale
|
62 |
-
|
63 |
-
def decode(self, z, **kwargs):
|
64 |
-
z = z * self.scale
|
65 |
-
|
66 |
-
if self.model_half:
|
67 |
-
z = z.half()
|
68 |
-
self.model.to(torch.float16)
|
69 |
-
|
70 |
-
decoded = self.model.decode_audio(z, chunked=self.chunked, iterate_batch=self.iterate_batch, **kwargs)
|
71 |
-
|
72 |
-
if self.model_half:
|
73 |
-
decoded = decoded.float()
|
74 |
-
|
75 |
-
return decoded
|
76 |
-
|
77 |
-
def tokenize(self, x, **kwargs):
|
78 |
-
assert self.model.is_discrete, "Cannot tokenize with a continuous model"
|
79 |
-
|
80 |
-
_, info = self.model.encode(x, return_info = True, **kwargs)
|
81 |
-
|
82 |
-
return info[self.model.bottleneck.tokens_id]
|
83 |
-
|
84 |
-
def decode_tokens(self, tokens, **kwargs):
|
85 |
-
assert self.model.is_discrete, "Cannot decode tokens with a continuous model"
|
86 |
-
|
87 |
-
return self.model.decode_tokens(tokens, **kwargs)
|
88 |
-
|
89 |
-
def load_state_dict(self, state_dict, strict=True):
|
90 |
-
self.model.load_state_dict(state_dict, strict=strict)
|
91 |
-
|
92 |
-
class WaveletPretransform(Pretransform):
|
93 |
-
def __init__(self, channels, levels, wavelet):
|
94 |
-
super().__init__(enable_grad=False, io_channels=channels, is_discrete=False)
|
95 |
-
|
96 |
-
from .wavelets import WaveletEncode1d, WaveletDecode1d
|
97 |
-
|
98 |
-
self.encoder = WaveletEncode1d(channels, levels, wavelet)
|
99 |
-
self.decoder = WaveletDecode1d(channels, levels, wavelet)
|
100 |
-
|
101 |
-
self.downsampling_ratio = 2 ** levels
|
102 |
-
self.io_channels = channels
|
103 |
-
self.encoded_channels = channels * self.downsampling_ratio
|
104 |
-
|
105 |
-
def encode(self, x):
|
106 |
-
return self.encoder(x)
|
107 |
-
|
108 |
-
def decode(self, z):
|
109 |
-
return self.decoder(z)
|
110 |
-
|
111 |
-
class PQMFPretransform(Pretransform):
|
112 |
-
def __init__(self, attenuation=100, num_bands=16):
|
113 |
-
# TODO: Fix PQMF to take in in-channels
|
114 |
-
super().__init__(enable_grad=False, io_channels=1, is_discrete=False)
|
115 |
-
from .pqmf import PQMF
|
116 |
-
self.pqmf = PQMF(attenuation, num_bands)
|
117 |
-
|
118 |
-
|
119 |
-
def encode(self, x):
|
120 |
-
# x is (Batch x Channels x Time)
|
121 |
-
x = self.pqmf.forward(x)
|
122 |
-
# pqmf.forward returns (Batch x Channels x Bands x Time)
|
123 |
-
# but Pretransform needs Batch x Channels x Time
|
124 |
-
# so concatenate channels and bands into one axis
|
125 |
-
return rearrange(x, "b c n t -> b (c n) t")
|
126 |
-
|
127 |
-
def decode(self, x):
|
128 |
-
# x is (Batch x (Channels Bands) x Time), convert back to (Batch x Channels x Bands x Time)
|
129 |
-
x = rearrange(x, "b (c n) t -> b c n t", n=self.pqmf.num_bands)
|
130 |
-
# returns (Batch x Channels x Time)
|
131 |
-
return self.pqmf.inverse(x)
|
132 |
-
|
133 |
-
class PretrainedDACPretransform(Pretransform):
|
134 |
-
def __init__(self, model_type="44khz", model_bitrate="8kbps", scale=1.0, quantize_on_decode: bool = True, chunked=True):
|
135 |
-
super().__init__(enable_grad=False, io_channels=1, is_discrete=True)
|
136 |
-
|
137 |
-
import dac
|
138 |
-
|
139 |
-
model_path = dac.utils.download(model_type=model_type, model_bitrate=model_bitrate)
|
140 |
-
|
141 |
-
self.model = dac.DAC.load(model_path)
|
142 |
-
|
143 |
-
self.quantize_on_decode = quantize_on_decode
|
144 |
-
|
145 |
-
if model_type == "44khz":
|
146 |
-
self.downsampling_ratio = 512
|
147 |
-
else:
|
148 |
-
self.downsampling_ratio = 320
|
149 |
-
|
150 |
-
self.io_channels = 1
|
151 |
-
|
152 |
-
self.scale = scale
|
153 |
-
|
154 |
-
self.chunked = chunked
|
155 |
-
|
156 |
-
self.encoded_channels = self.model.latent_dim
|
157 |
-
|
158 |
-
self.num_quantizers = self.model.n_codebooks
|
159 |
-
|
160 |
-
self.codebook_size = self.model.codebook_size
|
161 |
-
|
162 |
-
def encode(self, x):
|
163 |
-
|
164 |
-
latents = self.model.encoder(x)
|
165 |
-
|
166 |
-
if self.quantize_on_decode:
|
167 |
-
output = latents
|
168 |
-
else:
|
169 |
-
z, _, _, _, _ = self.model.quantizer(latents, n_quantizers=self.model.n_codebooks)
|
170 |
-
output = z
|
171 |
-
|
172 |
-
if self.scale != 1.0:
|
173 |
-
output = output / self.scale
|
174 |
-
|
175 |
-
return output
|
176 |
-
|
177 |
-
def decode(self, z):
|
178 |
-
|
179 |
-
if self.scale != 1.0:
|
180 |
-
z = z * self.scale
|
181 |
-
|
182 |
-
if self.quantize_on_decode:
|
183 |
-
z, _, _, _, _ = self.model.quantizer(z, n_quantizers=self.model.n_codebooks)
|
184 |
-
|
185 |
-
return self.model.decode(z)
|
186 |
-
|
187 |
-
def tokenize(self, x):
|
188 |
-
return self.model.encode(x)[1]
|
189 |
-
|
190 |
-
def decode_tokens(self, tokens):
|
191 |
-
latents = self.model.quantizer.from_codes(tokens)
|
192 |
-
return self.model.decode(latents)
|
193 |
-
|
194 |
-
class AudiocraftCompressionPretransform(Pretransform):
|
195 |
-
def __init__(self, model_type="facebook/encodec_32khz", scale=1.0, quantize_on_decode: bool = True):
|
196 |
-
super().__init__(enable_grad=False, io_channels=1, is_discrete=True)
|
197 |
-
|
198 |
-
try:
|
199 |
-
from audiocraft.models import CompressionModel
|
200 |
-
except ImportError:
|
201 |
-
raise ImportError("Audiocraft is not installed. Please install audiocraft to use Audiocraft models.")
|
202 |
-
|
203 |
-
self.model = CompressionModel.get_pretrained(model_type)
|
204 |
-
|
205 |
-
self.quantize_on_decode = quantize_on_decode
|
206 |
-
|
207 |
-
self.downsampling_ratio = round(self.model.sample_rate / self.model.frame_rate)
|
208 |
-
|
209 |
-
self.sample_rate = self.model.sample_rate
|
210 |
-
|
211 |
-
self.io_channels = self.model.channels
|
212 |
-
|
213 |
-
self.scale = scale
|
214 |
-
|
215 |
-
#self.encoded_channels = self.model.latent_dim
|
216 |
-
|
217 |
-
self.num_quantizers = self.model.num_codebooks
|
218 |
-
|
219 |
-
self.codebook_size = self.model.cardinality
|
220 |
-
|
221 |
-
self.model.to(torch.float16).eval().requires_grad_(False)
|
222 |
-
|
223 |
-
def encode(self, x):
|
224 |
-
|
225 |
-
assert False, "Audiocraft compression models do not support continuous encoding"
|
226 |
-
|
227 |
-
# latents = self.model.encoder(x)
|
228 |
-
|
229 |
-
# if self.quantize_on_decode:
|
230 |
-
# output = latents
|
231 |
-
# else:
|
232 |
-
# z, _, _, _, _ = self.model.quantizer(latents, n_quantizers=self.model.n_codebooks)
|
233 |
-
# output = z
|
234 |
-
|
235 |
-
# if self.scale != 1.0:
|
236 |
-
# output = output / self.scale
|
237 |
-
|
238 |
-
# return output
|
239 |
-
|
240 |
-
def decode(self, z):
|
241 |
-
|
242 |
-
assert False, "Audiocraft compression models do not support continuous decoding"
|
243 |
-
|
244 |
-
# if self.scale != 1.0:
|
245 |
-
# z = z * self.scale
|
246 |
-
|
247 |
-
# if self.quantize_on_decode:
|
248 |
-
# z, _, _, _, _ = self.model.quantizer(z, n_quantizers=self.model.n_codebooks)
|
249 |
-
|
250 |
-
# return self.model.decode(z)
|
251 |
-
|
252 |
-
def tokenize(self, x):
|
253 |
-
with torch.cuda.amp.autocast(enabled=False):
|
254 |
-
return self.model.encode(x.to(torch.float16))[0]
|
255 |
-
|
256 |
-
def decode_tokens(self, tokens):
|
257 |
-
with torch.cuda.amp.autocast(enabled=False):
|
258 |
-
return self.model.decode(tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/transformer.py
DELETED
@@ -1,805 +0,0 @@
|
|
1 |
-
from functools import reduce, partial
|
2 |
-
from packaging import version
|
3 |
-
|
4 |
-
from einops import rearrange, repeat
|
5 |
-
from einops.layers.torch import Rearrange
|
6 |
-
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
-
from torch import nn, einsum
|
9 |
-
from torch.cuda.amp import autocast
|
10 |
-
from typing import Callable, Literal
|
11 |
-
|
12 |
-
try:
|
13 |
-
from flash_attn import flash_attn_func, flash_attn_kvpacked_func
|
14 |
-
except ImportError as e:
|
15 |
-
print(e)
|
16 |
-
print('flash_attn not installed, disabling Flash Attention')
|
17 |
-
flash_attn_kvpacked_func = None
|
18 |
-
flash_attn_func = None
|
19 |
-
|
20 |
-
try:
|
21 |
-
import natten
|
22 |
-
except ImportError:
|
23 |
-
natten = None
|
24 |
-
|
25 |
-
def checkpoint(function, *args, **kwargs):
|
26 |
-
kwargs.setdefault("use_reentrant", False)
|
27 |
-
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
28 |
-
|
29 |
-
|
30 |
-
# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License
|
31 |
-
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt
|
32 |
-
|
33 |
-
def create_causal_mask(i, j, device):
|
34 |
-
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
|
35 |
-
|
36 |
-
def or_reduce(masks):
|
37 |
-
head, *body = masks
|
38 |
-
for rest in body:
|
39 |
-
head = head | rest
|
40 |
-
return head
|
41 |
-
|
42 |
-
# positional embeddings
|
43 |
-
|
44 |
-
class AbsolutePositionalEmbedding(nn.Module):
|
45 |
-
def __init__(self, dim, max_seq_len):
|
46 |
-
super().__init__()
|
47 |
-
self.scale = dim ** -0.5
|
48 |
-
self.max_seq_len = max_seq_len
|
49 |
-
self.emb = nn.Embedding(max_seq_len, dim)
|
50 |
-
|
51 |
-
def forward(self, x, pos = None, seq_start_pos = None):
|
52 |
-
seq_len, device = x.shape[1], x.device
|
53 |
-
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
54 |
-
|
55 |
-
if pos is None:
|
56 |
-
pos = torch.arange(seq_len, device = device)
|
57 |
-
|
58 |
-
if seq_start_pos is not None:
|
59 |
-
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
|
60 |
-
|
61 |
-
pos_emb = self.emb(pos)
|
62 |
-
pos_emb = pos_emb * self.scale
|
63 |
-
return pos_emb
|
64 |
-
|
65 |
-
class ScaledSinusoidalEmbedding(nn.Module):
|
66 |
-
def __init__(self, dim, theta = 10000):
|
67 |
-
super().__init__()
|
68 |
-
assert (dim % 2) == 0, 'dimension must be divisible by 2'
|
69 |
-
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
70 |
-
|
71 |
-
half_dim = dim // 2
|
72 |
-
freq_seq = torch.arange(half_dim).float() / half_dim
|
73 |
-
inv_freq = theta ** -freq_seq
|
74 |
-
self.register_buffer('inv_freq', inv_freq, persistent = False)
|
75 |
-
|
76 |
-
def forward(self, x, pos = None, seq_start_pos = None):
|
77 |
-
seq_len, device = x.shape[1], x.device
|
78 |
-
|
79 |
-
if pos is None:
|
80 |
-
pos = torch.arange(seq_len, device = device)
|
81 |
-
|
82 |
-
if seq_start_pos is not None:
|
83 |
-
pos = pos - seq_start_pos[..., None]
|
84 |
-
|
85 |
-
emb = einsum('i, j -> i j', pos, self.inv_freq)
|
86 |
-
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
|
87 |
-
return emb * self.scale
|
88 |
-
|
89 |
-
class RotaryEmbedding(nn.Module):
|
90 |
-
def __init__(
|
91 |
-
self,
|
92 |
-
dim,
|
93 |
-
use_xpos = False,
|
94 |
-
scale_base = 512,
|
95 |
-
interpolation_factor = 1.,
|
96 |
-
base = 10000,
|
97 |
-
base_rescale_factor = 1.
|
98 |
-
):
|
99 |
-
super().__init__()
|
100 |
-
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
101 |
-
# has some connection to NTK literature
|
102 |
-
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
103 |
-
base *= base_rescale_factor ** (dim / (dim - 2))
|
104 |
-
|
105 |
-
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
106 |
-
self.register_buffer('inv_freq', inv_freq)
|
107 |
-
|
108 |
-
assert interpolation_factor >= 1.
|
109 |
-
self.interpolation_factor = interpolation_factor
|
110 |
-
|
111 |
-
if not use_xpos:
|
112 |
-
self.register_buffer('scale', None)
|
113 |
-
return
|
114 |
-
|
115 |
-
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
116 |
-
|
117 |
-
self.scale_base = scale_base
|
118 |
-
self.register_buffer('scale', scale)
|
119 |
-
|
120 |
-
def forward_from_seq_len(self, seq_len):
|
121 |
-
device = self.inv_freq.device
|
122 |
-
|
123 |
-
t = torch.arange(seq_len, device = device)
|
124 |
-
return self.forward(t)
|
125 |
-
|
126 |
-
@autocast(enabled = False)
|
127 |
-
def forward(self, t):
|
128 |
-
device = self.inv_freq.device
|
129 |
-
|
130 |
-
t = t.to(torch.float32)
|
131 |
-
|
132 |
-
t = t / self.interpolation_factor
|
133 |
-
|
134 |
-
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
135 |
-
freqs = torch.cat((freqs, freqs), dim = -1)
|
136 |
-
|
137 |
-
if self.scale is None:
|
138 |
-
return freqs, 1.
|
139 |
-
|
140 |
-
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
141 |
-
scale = self.scale ** rearrange(power, 'n -> n 1')
|
142 |
-
scale = torch.cat((scale, scale), dim = -1)
|
143 |
-
|
144 |
-
return freqs, scale
|
145 |
-
|
146 |
-
def rotate_half(x):
|
147 |
-
x = rearrange(x, '... (j d) -> ... j d', j = 2)
|
148 |
-
x1, x2 = x.unbind(dim = -2)
|
149 |
-
return torch.cat((-x2, x1), dim = -1)
|
150 |
-
|
151 |
-
@autocast(enabled = False)
|
152 |
-
def apply_rotary_pos_emb(t, freqs, scale = 1):
|
153 |
-
out_dtype = t.dtype
|
154 |
-
|
155 |
-
# cast to float32 if necessary for numerical stability
|
156 |
-
dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
|
157 |
-
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
158 |
-
freqs, t = freqs.to(dtype), t.to(dtype)
|
159 |
-
freqs = freqs[-seq_len:, :]
|
160 |
-
|
161 |
-
if t.ndim == 4 and freqs.ndim == 3:
|
162 |
-
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
163 |
-
|
164 |
-
# partial rotary embeddings, Wang et al. GPT-J
|
165 |
-
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
166 |
-
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
167 |
-
|
168 |
-
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
|
169 |
-
|
170 |
-
return torch.cat((t, t_unrotated), dim = -1)
|
171 |
-
|
172 |
-
# norms
|
173 |
-
class LayerNorm(nn.Module):
|
174 |
-
def __init__(self, dim, bias=False, fix_scale=False):
|
175 |
-
"""
|
176 |
-
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
|
177 |
-
"""
|
178 |
-
super().__init__()
|
179 |
-
|
180 |
-
if fix_scale:
|
181 |
-
self.register_buffer("gamma", torch.ones(dim))
|
182 |
-
else:
|
183 |
-
self.gamma = nn.Parameter(torch.ones(dim))
|
184 |
-
|
185 |
-
if bias:
|
186 |
-
self.beta = nn.Parameter(torch.zeros(dim))
|
187 |
-
else:
|
188 |
-
self.register_buffer("beta", torch.zeros(dim))
|
189 |
-
|
190 |
-
|
191 |
-
def forward(self, x):
|
192 |
-
return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta)
|
193 |
-
|
194 |
-
# feedforward
|
195 |
-
|
196 |
-
class GLU(nn.Module):
|
197 |
-
def __init__(
|
198 |
-
self,
|
199 |
-
dim_in,
|
200 |
-
dim_out,
|
201 |
-
activation: Callable,
|
202 |
-
use_conv = False,
|
203 |
-
conv_kernel_size = 3,
|
204 |
-
):
|
205 |
-
super().__init__()
|
206 |
-
self.act = activation
|
207 |
-
self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2))
|
208 |
-
self.use_conv = use_conv
|
209 |
-
|
210 |
-
def forward(self, x):
|
211 |
-
if self.use_conv:
|
212 |
-
x = rearrange(x, 'b n d -> b d n')
|
213 |
-
x = self.proj(x)
|
214 |
-
x = rearrange(x, 'b d n -> b n d')
|
215 |
-
else:
|
216 |
-
x = self.proj(x)
|
217 |
-
|
218 |
-
x, gate = x.chunk(2, dim = -1)
|
219 |
-
return x * self.act(gate)
|
220 |
-
|
221 |
-
class FeedForward(nn.Module):
|
222 |
-
def __init__(
|
223 |
-
self,
|
224 |
-
dim,
|
225 |
-
dim_out = None,
|
226 |
-
mult = 4,
|
227 |
-
no_bias = False,
|
228 |
-
glu = True,
|
229 |
-
use_conv = False,
|
230 |
-
conv_kernel_size = 3,
|
231 |
-
zero_init_output = True,
|
232 |
-
):
|
233 |
-
super().__init__()
|
234 |
-
inner_dim = int(dim * mult)
|
235 |
-
|
236 |
-
# Default to SwiGLU
|
237 |
-
|
238 |
-
activation = nn.SiLU()
|
239 |
-
|
240 |
-
dim_out = dim if dim_out is None else dim_out
|
241 |
-
|
242 |
-
if glu:
|
243 |
-
linear_in = GLU(dim, inner_dim, activation)
|
244 |
-
else:
|
245 |
-
linear_in = nn.Sequential(
|
246 |
-
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
247 |
-
nn.Linear(dim, inner_dim, bias = not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias),
|
248 |
-
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
249 |
-
activation
|
250 |
-
)
|
251 |
-
|
252 |
-
linear_out = nn.Linear(inner_dim, dim_out, bias = not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias)
|
253 |
-
|
254 |
-
# init last linear layer to 0
|
255 |
-
if zero_init_output:
|
256 |
-
nn.init.zeros_(linear_out.weight)
|
257 |
-
if not no_bias:
|
258 |
-
nn.init.zeros_(linear_out.bias)
|
259 |
-
|
260 |
-
|
261 |
-
self.ff = nn.Sequential(
|
262 |
-
linear_in,
|
263 |
-
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
|
264 |
-
linear_out,
|
265 |
-
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
266 |
-
)
|
267 |
-
|
268 |
-
def forward(self, x):
|
269 |
-
return self.ff(x)
|
270 |
-
|
271 |
-
class Attention(nn.Module):
|
272 |
-
def __init__(
|
273 |
-
self,
|
274 |
-
dim,
|
275 |
-
dim_heads = 64,
|
276 |
-
dim_context = None,
|
277 |
-
causal = False,
|
278 |
-
zero_init_output=True,
|
279 |
-
qk_norm = False,
|
280 |
-
natten_kernel_size = None
|
281 |
-
):
|
282 |
-
super().__init__()
|
283 |
-
self.dim = dim
|
284 |
-
self.dim_heads = dim_heads
|
285 |
-
self.causal = causal
|
286 |
-
|
287 |
-
dim_kv = dim_context if dim_context is not None else dim
|
288 |
-
|
289 |
-
self.num_heads = dim // dim_heads
|
290 |
-
self.kv_heads = dim_kv // dim_heads
|
291 |
-
|
292 |
-
if dim_context is not None:
|
293 |
-
self.to_q = nn.Linear(dim, dim, bias=False)
|
294 |
-
self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False)
|
295 |
-
else:
|
296 |
-
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
|
297 |
-
|
298 |
-
self.to_out = nn.Linear(dim, dim, bias=False)
|
299 |
-
|
300 |
-
if zero_init_output:
|
301 |
-
nn.init.zeros_(self.to_out.weight)
|
302 |
-
|
303 |
-
self.qk_norm = qk_norm
|
304 |
-
|
305 |
-
# Using 1d neighborhood attention
|
306 |
-
self.natten_kernel_size = natten_kernel_size
|
307 |
-
if natten_kernel_size is not None:
|
308 |
-
return
|
309 |
-
|
310 |
-
self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
311 |
-
|
312 |
-
self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None
|
313 |
-
|
314 |
-
self.sdp_kwargs = dict(
|
315 |
-
enable_flash = True,
|
316 |
-
enable_math = True,
|
317 |
-
enable_mem_efficient = True
|
318 |
-
)
|
319 |
-
|
320 |
-
def flash_attn(
|
321 |
-
self,
|
322 |
-
q,
|
323 |
-
k,
|
324 |
-
v,
|
325 |
-
mask = None,
|
326 |
-
causal = None
|
327 |
-
):
|
328 |
-
batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device
|
329 |
-
kv_heads = k.shape[1]
|
330 |
-
# Recommended for multi-query single-key-value attention by Tri Dao
|
331 |
-
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
|
332 |
-
|
333 |
-
if heads != kv_heads:
|
334 |
-
# Repeat interleave kv_heads to match q_heads
|
335 |
-
heads_per_kv_head = heads // kv_heads
|
336 |
-
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
337 |
-
|
338 |
-
if k.ndim == 3:
|
339 |
-
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
|
340 |
-
|
341 |
-
if v.ndim == 3:
|
342 |
-
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
|
343 |
-
|
344 |
-
causal = self.causal if causal is None else causal
|
345 |
-
|
346 |
-
if q_len == 1 and causal:
|
347 |
-
causal = False
|
348 |
-
|
349 |
-
if mask is not None:
|
350 |
-
assert mask.ndim == 4
|
351 |
-
mask = mask.expand(batch, heads, q_len, k_len)
|
352 |
-
|
353 |
-
# handle kv cache - this should be bypassable in updated flash attention 2
|
354 |
-
|
355 |
-
if k_len > q_len and causal:
|
356 |
-
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
357 |
-
if mask is None:
|
358 |
-
mask = ~causal_mask
|
359 |
-
else:
|
360 |
-
mask = mask & ~causal_mask
|
361 |
-
causal = False
|
362 |
-
|
363 |
-
# manually handle causal mask, if another mask was given
|
364 |
-
|
365 |
-
row_is_entirely_masked = None
|
366 |
-
|
367 |
-
if mask is not None and causal:
|
368 |
-
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
369 |
-
mask = mask & ~causal_mask
|
370 |
-
|
371 |
-
# protect against an entire row being masked out
|
372 |
-
|
373 |
-
row_is_entirely_masked = ~mask.any(dim = -1)
|
374 |
-
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
|
375 |
-
|
376 |
-
causal = False
|
377 |
-
|
378 |
-
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs):
|
379 |
-
out = F.scaled_dot_product_attention(
|
380 |
-
q, k, v,
|
381 |
-
attn_mask = mask,
|
382 |
-
is_causal = causal
|
383 |
-
)
|
384 |
-
|
385 |
-
# for a row that is entirely masked out, should zero out the output of that row token
|
386 |
-
|
387 |
-
if row_is_entirely_masked is not None:
|
388 |
-
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
|
389 |
-
|
390 |
-
return out
|
391 |
-
|
392 |
-
def forward(
|
393 |
-
self,
|
394 |
-
x,
|
395 |
-
context = None,
|
396 |
-
mask = None,
|
397 |
-
context_mask = None,
|
398 |
-
rotary_pos_emb = None,
|
399 |
-
causal = None
|
400 |
-
):
|
401 |
-
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
|
402 |
-
|
403 |
-
kv_input = context if has_context else x
|
404 |
-
|
405 |
-
if hasattr(self, 'to_q'):
|
406 |
-
# Use separate linear projections for q and k/v
|
407 |
-
q = self.to_q(x)
|
408 |
-
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
409 |
-
|
410 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
411 |
-
|
412 |
-
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
|
413 |
-
else:
|
414 |
-
# Use fused linear projection
|
415 |
-
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
416 |
-
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
417 |
-
|
418 |
-
# Normalize q and k for cosine sim attention
|
419 |
-
if self.qk_norm:
|
420 |
-
q = F.normalize(q, dim=-1)
|
421 |
-
k = F.normalize(k, dim=-1)
|
422 |
-
|
423 |
-
if rotary_pos_emb is not None and not has_context:
|
424 |
-
freqs, _ = rotary_pos_emb
|
425 |
-
|
426 |
-
q_dtype = q.dtype
|
427 |
-
k_dtype = k.dtype
|
428 |
-
|
429 |
-
q = q.to(torch.float32)
|
430 |
-
k = k.to(torch.float32)
|
431 |
-
freqs = freqs.to(torch.float32)
|
432 |
-
|
433 |
-
q = apply_rotary_pos_emb(q, freqs)
|
434 |
-
k = apply_rotary_pos_emb(k, freqs)
|
435 |
-
|
436 |
-
q = q.to(q_dtype)
|
437 |
-
k = k.to(k_dtype)
|
438 |
-
|
439 |
-
input_mask = context_mask
|
440 |
-
|
441 |
-
if input_mask is None and not has_context:
|
442 |
-
input_mask = mask
|
443 |
-
|
444 |
-
# determine masking
|
445 |
-
masks = []
|
446 |
-
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
|
447 |
-
|
448 |
-
if input_mask is not None:
|
449 |
-
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
450 |
-
masks.append(~input_mask)
|
451 |
-
|
452 |
-
# Other masks will be added here later
|
453 |
-
|
454 |
-
if len(masks) > 0:
|
455 |
-
final_attn_mask = ~or_reduce(masks)
|
456 |
-
|
457 |
-
n, device = q.shape[-2], q.device
|
458 |
-
|
459 |
-
causal = self.causal if causal is None else causal
|
460 |
-
|
461 |
-
if n == 1 and causal:
|
462 |
-
causal = False
|
463 |
-
|
464 |
-
if self.natten_kernel_size is not None:
|
465 |
-
if natten is None:
|
466 |
-
raise ImportError('natten not installed, please install natten to use neighborhood attention')
|
467 |
-
|
468 |
-
dtype_in = q.dtype
|
469 |
-
q, k, v = map(lambda t: t.to(torch.float32), (q, k, v))
|
470 |
-
|
471 |
-
attn = natten.functional.natten1dqk(q, k, kernel_size = self.natten_kernel_size, dilation=1)
|
472 |
-
|
473 |
-
if final_attn_mask is not None:
|
474 |
-
attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max)
|
475 |
-
|
476 |
-
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
|
477 |
-
|
478 |
-
out = natten.functional.natten1dav(attn, v, kernel_size = self.natten_kernel_size, dilation=1).to(dtype_in)
|
479 |
-
|
480 |
-
# Prioritize Flash Attention 2
|
481 |
-
elif self.use_fa_flash:
|
482 |
-
assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2'
|
483 |
-
# Flash Attention 2 requires FP16 inputs
|
484 |
-
fa_dtype_in = q.dtype
|
485 |
-
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v))
|
486 |
-
|
487 |
-
out = flash_attn_func(q, k, v, causal = causal)
|
488 |
-
|
489 |
-
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d')
|
490 |
-
|
491 |
-
# Fall back to PyTorch implementation
|
492 |
-
elif self.use_pt_flash:
|
493 |
-
out = self.flash_attn(q, k, v, causal = causal, mask = final_attn_mask)
|
494 |
-
|
495 |
-
else:
|
496 |
-
# Fall back to custom implementation
|
497 |
-
|
498 |
-
if h != kv_h:
|
499 |
-
# Repeat interleave kv_heads to match q_heads
|
500 |
-
heads_per_kv_head = h // kv_h
|
501 |
-
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
502 |
-
|
503 |
-
scale = 1. / (q.shape[-1] ** 0.5)
|
504 |
-
|
505 |
-
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
|
506 |
-
|
507 |
-
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
|
508 |
-
|
509 |
-
i, j, dtype = *dots.shape[-2:], dots.dtype
|
510 |
-
|
511 |
-
mask_value = -torch.finfo(dots.dtype).max
|
512 |
-
|
513 |
-
if final_attn_mask is not None:
|
514 |
-
dots = dots.masked_fill(~final_attn_mask, mask_value)
|
515 |
-
|
516 |
-
if causal:
|
517 |
-
causal_mask = self.create_causal_mask(i, j, device = device)
|
518 |
-
dots = dots.masked_fill(causal_mask, mask_value)
|
519 |
-
|
520 |
-
attn = F.softmax(dots, dim=-1, dtype=torch.float32)
|
521 |
-
attn = attn.type(dtype)
|
522 |
-
|
523 |
-
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
|
524 |
-
|
525 |
-
# merge heads
|
526 |
-
out = rearrange(out, ' b h n d -> b n (h d)')
|
527 |
-
|
528 |
-
# Communicate between heads
|
529 |
-
|
530 |
-
# with autocast(enabled = False):
|
531 |
-
# out_dtype = out.dtype
|
532 |
-
# out = out.to(torch.float32)
|
533 |
-
# out = self.to_out(out).to(out_dtype)
|
534 |
-
out = self.to_out(out)
|
535 |
-
|
536 |
-
if mask is not None:
|
537 |
-
mask = rearrange(mask, 'b n -> b n 1')
|
538 |
-
out = out.masked_fill(~mask, 0.)
|
539 |
-
|
540 |
-
return out
|
541 |
-
|
542 |
-
class ConformerModule(nn.Module):
|
543 |
-
def __init__(
|
544 |
-
self,
|
545 |
-
dim,
|
546 |
-
norm_kwargs = {},
|
547 |
-
):
|
548 |
-
|
549 |
-
super().__init__()
|
550 |
-
|
551 |
-
self.dim = dim
|
552 |
-
|
553 |
-
self.in_norm = LayerNorm(dim, **norm_kwargs)
|
554 |
-
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
555 |
-
self.glu = GLU(dim, dim, nn.SiLU())
|
556 |
-
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
|
557 |
-
self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
|
558 |
-
self.swish = nn.SiLU()
|
559 |
-
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
560 |
-
|
561 |
-
def forward(self, x):
|
562 |
-
x = self.in_norm(x)
|
563 |
-
x = rearrange(x, 'b n d -> b d n')
|
564 |
-
x = self.pointwise_conv(x)
|
565 |
-
x = rearrange(x, 'b d n -> b n d')
|
566 |
-
x = self.glu(x)
|
567 |
-
x = rearrange(x, 'b n d -> b d n')
|
568 |
-
x = self.depthwise_conv(x)
|
569 |
-
x = rearrange(x, 'b d n -> b n d')
|
570 |
-
x = self.mid_norm(x)
|
571 |
-
x = self.swish(x)
|
572 |
-
x = rearrange(x, 'b n d -> b d n')
|
573 |
-
x = self.pointwise_conv_2(x)
|
574 |
-
x = rearrange(x, 'b d n -> b n d')
|
575 |
-
|
576 |
-
return x
|
577 |
-
|
578 |
-
class TransformerBlock(nn.Module):
|
579 |
-
def __init__(
|
580 |
-
self,
|
581 |
-
dim,
|
582 |
-
dim_heads = 64,
|
583 |
-
cross_attend = False,
|
584 |
-
dim_context = None,
|
585 |
-
global_cond_dim = None,
|
586 |
-
causal = False,
|
587 |
-
zero_init_branch_outputs = True,
|
588 |
-
conformer = False,
|
589 |
-
layer_ix = -1,
|
590 |
-
remove_norms = False,
|
591 |
-
attn_kwargs = {},
|
592 |
-
ff_kwargs = {},
|
593 |
-
norm_kwargs = {}
|
594 |
-
):
|
595 |
-
|
596 |
-
super().__init__()
|
597 |
-
self.dim = dim
|
598 |
-
self.dim_heads = dim_heads
|
599 |
-
self.cross_attend = cross_attend
|
600 |
-
self.dim_context = dim_context
|
601 |
-
self.causal = causal
|
602 |
-
|
603 |
-
self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
604 |
-
|
605 |
-
self.self_attn = Attention(
|
606 |
-
dim,
|
607 |
-
dim_heads = dim_heads,
|
608 |
-
causal = causal,
|
609 |
-
zero_init_output=zero_init_branch_outputs,
|
610 |
-
**attn_kwargs
|
611 |
-
)
|
612 |
-
|
613 |
-
if cross_attend:
|
614 |
-
self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
615 |
-
self.cross_attn = Attention(
|
616 |
-
dim,
|
617 |
-
dim_heads = dim_heads,
|
618 |
-
dim_context=dim_context,
|
619 |
-
causal = causal,
|
620 |
-
zero_init_output=zero_init_branch_outputs,
|
621 |
-
**attn_kwargs
|
622 |
-
)
|
623 |
-
|
624 |
-
self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
625 |
-
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs)
|
626 |
-
|
627 |
-
self.layer_ix = layer_ix
|
628 |
-
|
629 |
-
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
|
630 |
-
|
631 |
-
self.global_cond_dim = global_cond_dim
|
632 |
-
|
633 |
-
if global_cond_dim is not None:
|
634 |
-
self.to_scale_shift_gate = nn.Sequential(
|
635 |
-
nn.SiLU(),
|
636 |
-
nn.Linear(global_cond_dim, dim * 6, bias=False)
|
637 |
-
)
|
638 |
-
|
639 |
-
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
|
640 |
-
#nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
|
641 |
-
|
642 |
-
def forward(
|
643 |
-
self,
|
644 |
-
x,
|
645 |
-
context = None,
|
646 |
-
global_cond=None,
|
647 |
-
mask = None,
|
648 |
-
context_mask = None,
|
649 |
-
rotary_pos_emb = None
|
650 |
-
):
|
651 |
-
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
|
652 |
-
|
653 |
-
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
|
654 |
-
|
655 |
-
# self-attention with adaLN
|
656 |
-
residual = x
|
657 |
-
x = self.pre_norm(x)
|
658 |
-
x = x * (1 + scale_self) + shift_self
|
659 |
-
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
|
660 |
-
x = x * torch.sigmoid(1 - gate_self)
|
661 |
-
x = x + residual
|
662 |
-
|
663 |
-
if context is not None:
|
664 |
-
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
665 |
-
|
666 |
-
if self.conformer is not None:
|
667 |
-
x = x + self.conformer(x)
|
668 |
-
|
669 |
-
# feedforward with adaLN
|
670 |
-
residual = x
|
671 |
-
x = self.ff_norm(x)
|
672 |
-
x = x * (1 + scale_ff) + shift_ff
|
673 |
-
x = self.ff(x)
|
674 |
-
x = x * torch.sigmoid(1 - gate_ff)
|
675 |
-
x = x + residual
|
676 |
-
|
677 |
-
else:
|
678 |
-
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
|
679 |
-
|
680 |
-
if context is not None:
|
681 |
-
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
682 |
-
|
683 |
-
if self.conformer is not None:
|
684 |
-
x = x + self.conformer(x)
|
685 |
-
|
686 |
-
x = x + self.ff(self.ff_norm(x))
|
687 |
-
|
688 |
-
return x
|
689 |
-
|
690 |
-
class ContinuousTransformer(nn.Module):
|
691 |
-
def __init__(
|
692 |
-
self,
|
693 |
-
dim,
|
694 |
-
depth,
|
695 |
-
*,
|
696 |
-
dim_in = None,
|
697 |
-
dim_out = None,
|
698 |
-
dim_heads = 64,
|
699 |
-
cross_attend=False,
|
700 |
-
cond_token_dim=None,
|
701 |
-
global_cond_dim=None,
|
702 |
-
causal=False,
|
703 |
-
rotary_pos_emb=True,
|
704 |
-
zero_init_branch_outputs=True,
|
705 |
-
conformer=False,
|
706 |
-
use_sinusoidal_emb=False,
|
707 |
-
use_abs_pos_emb=False,
|
708 |
-
abs_pos_emb_max_length=10000,
|
709 |
-
**kwargs
|
710 |
-
):
|
711 |
-
|
712 |
-
super().__init__()
|
713 |
-
|
714 |
-
self.dim = dim
|
715 |
-
self.depth = depth
|
716 |
-
self.causal = causal
|
717 |
-
self.layers = nn.ModuleList([])
|
718 |
-
|
719 |
-
self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity()
|
720 |
-
self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity()
|
721 |
-
|
722 |
-
if rotary_pos_emb:
|
723 |
-
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
|
724 |
-
else:
|
725 |
-
self.rotary_pos_emb = None
|
726 |
-
|
727 |
-
self.use_sinusoidal_emb = use_sinusoidal_emb
|
728 |
-
if use_sinusoidal_emb:
|
729 |
-
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
730 |
-
|
731 |
-
self.use_abs_pos_emb = use_abs_pos_emb
|
732 |
-
if use_abs_pos_emb:
|
733 |
-
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
|
734 |
-
|
735 |
-
for i in range(depth):
|
736 |
-
self.layers.append(
|
737 |
-
TransformerBlock(
|
738 |
-
dim,
|
739 |
-
dim_heads = dim_heads,
|
740 |
-
cross_attend = cross_attend,
|
741 |
-
dim_context = cond_token_dim,
|
742 |
-
global_cond_dim = global_cond_dim,
|
743 |
-
causal = causal,
|
744 |
-
zero_init_branch_outputs = zero_init_branch_outputs,
|
745 |
-
conformer=conformer,
|
746 |
-
layer_ix=i,
|
747 |
-
**kwargs
|
748 |
-
)
|
749 |
-
)
|
750 |
-
|
751 |
-
def forward(
|
752 |
-
self,
|
753 |
-
x,
|
754 |
-
mask = None,
|
755 |
-
prepend_embeds = None,
|
756 |
-
prepend_mask = None,
|
757 |
-
global_cond = None,
|
758 |
-
return_info = False,
|
759 |
-
**kwargs
|
760 |
-
):
|
761 |
-
batch, seq, device = *x.shape[:2], x.device
|
762 |
-
|
763 |
-
info = {
|
764 |
-
"hidden_states": [],
|
765 |
-
}
|
766 |
-
|
767 |
-
x = self.project_in(x)
|
768 |
-
|
769 |
-
if prepend_embeds is not None:
|
770 |
-
prepend_length, prepend_dim = prepend_embeds.shape[1:]
|
771 |
-
|
772 |
-
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
|
773 |
-
|
774 |
-
x = torch.cat((prepend_embeds, x), dim = -2)
|
775 |
-
|
776 |
-
if prepend_mask is not None or mask is not None:
|
777 |
-
mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
|
778 |
-
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
|
779 |
-
|
780 |
-
mask = torch.cat((prepend_mask, mask), dim = -1)
|
781 |
-
|
782 |
-
# Attention layers
|
783 |
-
|
784 |
-
if self.rotary_pos_emb is not None:
|
785 |
-
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
|
786 |
-
else:
|
787 |
-
rotary_pos_emb = None
|
788 |
-
|
789 |
-
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
|
790 |
-
x = x + self.pos_emb(x)
|
791 |
-
|
792 |
-
# Iterate over the transformer layers
|
793 |
-
for layer in self.layers:
|
794 |
-
#x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
795 |
-
x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
796 |
-
|
797 |
-
if return_info:
|
798 |
-
info["hidden_states"].append(x)
|
799 |
-
|
800 |
-
x = self.project_out(x)
|
801 |
-
|
802 |
-
if return_info:
|
803 |
-
return x, info
|
804 |
-
|
805 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/utils.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from safetensors.torch import load_file
|
3 |
-
|
4 |
-
from torch.nn.utils import remove_weight_norm
|
5 |
-
|
6 |
-
def load_ckpt_state_dict(ckpt_path):
|
7 |
-
if ckpt_path.endswith(".safetensors"):
|
8 |
-
state_dict = load_file(ckpt_path)
|
9 |
-
else:
|
10 |
-
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
|
11 |
-
|
12 |
-
return state_dict
|
13 |
-
|
14 |
-
def remove_weight_norm_from_model(model):
|
15 |
-
for module in model.modules():
|
16 |
-
if hasattr(module, "weight"):
|
17 |
-
print(f"Removing weight norm from {module}")
|
18 |
-
remove_weight_norm(module)
|
19 |
-
|
20 |
-
return model
|
21 |
-
|
22 |
-
# Sampling functions copied from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/utils/utils.py under MIT license
|
23 |
-
# License can be found in LICENSES/LICENSE_META.txt
|
24 |
-
|
25 |
-
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None):
|
26 |
-
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension.
|
27 |
-
|
28 |
-
Args:
|
29 |
-
input (torch.Tensor): The input tensor containing probabilities.
|
30 |
-
num_samples (int): Number of samples to draw.
|
31 |
-
replacement (bool): Whether to draw with replacement or not.
|
32 |
-
Keywords args:
|
33 |
-
generator (torch.Generator): A pseudorandom number generator for sampling.
|
34 |
-
Returns:
|
35 |
-
torch.Tensor: Last dimension contains num_samples indices
|
36 |
-
sampled from the multinomial probability distribution
|
37 |
-
located in the last dimension of tensor input.
|
38 |
-
"""
|
39 |
-
|
40 |
-
if num_samples == 1:
|
41 |
-
q = torch.empty_like(input).exponential_(1, generator=generator)
|
42 |
-
return torch.argmax(input / q, dim=-1, keepdim=True).to(torch.int64)
|
43 |
-
|
44 |
-
input_ = input.reshape(-1, input.shape[-1])
|
45 |
-
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator)
|
46 |
-
output = output_.reshape(*list(input.shape[:-1]), -1)
|
47 |
-
return output
|
48 |
-
|
49 |
-
|
50 |
-
def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor:
|
51 |
-
"""Sample next token from top K values along the last dimension of the input probs tensor.
|
52 |
-
|
53 |
-
Args:
|
54 |
-
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
|
55 |
-
k (int): The k in “top-k”.
|
56 |
-
Returns:
|
57 |
-
torch.Tensor: Sampled tokens.
|
58 |
-
"""
|
59 |
-
top_k_value, _ = torch.topk(probs, k, dim=-1)
|
60 |
-
min_value_top_k = top_k_value[..., [-1]]
|
61 |
-
probs *= (probs >= min_value_top_k).float()
|
62 |
-
probs.div_(probs.sum(dim=-1, keepdim=True))
|
63 |
-
next_token = multinomial(probs, num_samples=1)
|
64 |
-
return next_token
|
65 |
-
|
66 |
-
|
67 |
-
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
|
68 |
-
"""Sample next token from top P probabilities along the last dimension of the input probs tensor.
|
69 |
-
|
70 |
-
Args:
|
71 |
-
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
|
72 |
-
p (int): The p in “top-p”.
|
73 |
-
Returns:
|
74 |
-
torch.Tensor: Sampled tokens.
|
75 |
-
"""
|
76 |
-
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
77 |
-
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
78 |
-
mask = probs_sum - probs_sort > p
|
79 |
-
probs_sort *= (~mask).float()
|
80 |
-
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
81 |
-
next_token = multinomial(probs_sort, num_samples=1)
|
82 |
-
next_token = torch.gather(probs_idx, -1, next_token)
|
83 |
-
return next_token
|
84 |
-
|
85 |
-
def next_power_of_two(n):
|
86 |
-
return 2 ** (n - 1).bit_length()
|
87 |
-
|
88 |
-
def next_multiple_of_64(n):
|
89 |
-
return ((n + 63) // 64) * 64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/models/wavelets.py
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
"""The 1D discrete wavelet transform for PyTorch."""
|
2 |
-
|
3 |
-
from einops import rearrange
|
4 |
-
import pywt
|
5 |
-
import torch
|
6 |
-
from torch import nn
|
7 |
-
from torch.nn import functional as F
|
8 |
-
from typing import Literal
|
9 |
-
|
10 |
-
|
11 |
-
def get_filter_bank(wavelet):
|
12 |
-
filt = torch.tensor(pywt.Wavelet(wavelet).filter_bank)
|
13 |
-
if wavelet.startswith("bior") and torch.all(filt[:, 0] == 0):
|
14 |
-
filt = filt[:, 1:]
|
15 |
-
return filt
|
16 |
-
|
17 |
-
class WaveletEncode1d(nn.Module):
|
18 |
-
def __init__(self,
|
19 |
-
channels,
|
20 |
-
levels,
|
21 |
-
wavelet: Literal["bior2.2", "bior2.4", "bior2.6", "bior2.8", "bior4.4", "bior6.8"] = "bior4.4"):
|
22 |
-
super().__init__()
|
23 |
-
self.wavelet = wavelet
|
24 |
-
self.channels = channels
|
25 |
-
self.levels = levels
|
26 |
-
filt = get_filter_bank(wavelet)
|
27 |
-
assert filt.shape[-1] % 2 == 1
|
28 |
-
kernel = filt[:2, None]
|
29 |
-
kernel = torch.flip(kernel, dims=(-1,))
|
30 |
-
index_i = torch.repeat_interleave(torch.arange(2), channels)
|
31 |
-
index_j = torch.tile(torch.arange(channels), (2,))
|
32 |
-
kernel_final = torch.zeros(channels * 2, channels, filt.shape[-1])
|
33 |
-
kernel_final[index_i * channels + index_j, index_j] = kernel[index_i, 0]
|
34 |
-
self.register_buffer("kernel", kernel_final)
|
35 |
-
|
36 |
-
def forward(self, x):
|
37 |
-
for i in range(self.levels):
|
38 |
-
low, rest = x[:, : self.channels], x[:, self.channels :]
|
39 |
-
pad = self.kernel.shape[-1] // 2
|
40 |
-
low = F.pad(low, (pad, pad), "reflect")
|
41 |
-
low = F.conv1d(low, self.kernel, stride=2)
|
42 |
-
rest = rearrange(
|
43 |
-
rest, "n (c c2) (l l2) -> n (c l2 c2) l", l2=2, c2=self.channels
|
44 |
-
)
|
45 |
-
x = torch.cat([low, rest], dim=1)
|
46 |
-
return x
|
47 |
-
|
48 |
-
|
49 |
-
class WaveletDecode1d(nn.Module):
|
50 |
-
def __init__(self,
|
51 |
-
channels,
|
52 |
-
levels,
|
53 |
-
wavelet: Literal["bior2.2", "bior2.4", "bior2.6", "bior2.8", "bior4.4", "bior6.8"] = "bior4.4"):
|
54 |
-
super().__init__()
|
55 |
-
self.wavelet = wavelet
|
56 |
-
self.channels = channels
|
57 |
-
self.levels = levels
|
58 |
-
filt = get_filter_bank(wavelet)
|
59 |
-
assert filt.shape[-1] % 2 == 1
|
60 |
-
kernel = filt[2:, None]
|
61 |
-
index_i = torch.repeat_interleave(torch.arange(2), channels)
|
62 |
-
index_j = torch.tile(torch.arange(channels), (2,))
|
63 |
-
kernel_final = torch.zeros(channels * 2, channels, filt.shape[-1])
|
64 |
-
kernel_final[index_i * channels + index_j, index_j] = kernel[index_i, 0]
|
65 |
-
self.register_buffer("kernel", kernel_final)
|
66 |
-
|
67 |
-
def forward(self, x):
|
68 |
-
for i in range(self.levels):
|
69 |
-
low, rest = x[:, : self.channels * 2], x[:, self.channels * 2 :]
|
70 |
-
pad = self.kernel.shape[-1] // 2 + 2
|
71 |
-
low = rearrange(low, "n (l2 c) l -> n c (l l2)", l2=2)
|
72 |
-
low = F.pad(low, (pad, pad), "reflect")
|
73 |
-
low = rearrange(low, "n c (l l2) -> n (l2 c) l", l2=2)
|
74 |
-
low = F.conv_transpose1d(
|
75 |
-
low, self.kernel, stride=2, padding=self.kernel.shape[-1] // 2
|
76 |
-
)
|
77 |
-
low = low[..., pad - 1 : -pad]
|
78 |
-
rest = rearrange(
|
79 |
-
rest, "n (c l2 c2) l -> n (c c2) (l l2)", l2=2, c2=self.channels
|
80 |
-
)
|
81 |
-
x = torch.cat([low, rest], dim=1)
|
82 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/training/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .factory import create_training_wrapper_from_config, create_demo_callback_from_config
|
|
|
|
stable/build/lib/stable_audio_tools/training/autoencoders.py
DELETED
@@ -1,477 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torchaudio
|
3 |
-
import wandb
|
4 |
-
from einops import rearrange
|
5 |
-
from safetensors.torch import save_file, save_model
|
6 |
-
from ema_pytorch import EMA
|
7 |
-
from .losses.auraloss import SumAndDifferenceSTFTLoss, MultiResolutionSTFTLoss
|
8 |
-
import pytorch_lightning as pl
|
9 |
-
from ..models.autoencoders import AudioAutoencoder
|
10 |
-
from ..models.discriminators import EncodecDiscriminator, OobleckDiscriminator, DACGANLoss
|
11 |
-
from ..models.bottleneck import VAEBottleneck, RVQBottleneck, DACRVQBottleneck, DACRVQVAEBottleneck, RVQVAEBottleneck, WassersteinBottleneck
|
12 |
-
from .losses import MultiLoss, AuralossLoss, ValueLoss, L1Loss
|
13 |
-
from .utils import create_optimizer_from_config, create_scheduler_from_config
|
14 |
-
|
15 |
-
|
16 |
-
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
17 |
-
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
|
18 |
-
|
19 |
-
class AutoencoderTrainingWrapper(pl.LightningModule):
|
20 |
-
def __init__(
|
21 |
-
self,
|
22 |
-
autoencoder: AudioAutoencoder,
|
23 |
-
lr: float = 1e-4,
|
24 |
-
warmup_steps: int = 0,
|
25 |
-
encoder_freeze_on_warmup: bool = False,
|
26 |
-
sample_rate=48000,
|
27 |
-
loss_config: dict = None,
|
28 |
-
optimizer_configs: dict = None,
|
29 |
-
use_ema: bool = True,
|
30 |
-
ema_copy = None,
|
31 |
-
force_input_mono = False,
|
32 |
-
latent_mask_ratio = 0.0,
|
33 |
-
teacher_model: AudioAutoencoder = None
|
34 |
-
):
|
35 |
-
super().__init__()
|
36 |
-
|
37 |
-
self.automatic_optimization = False
|
38 |
-
|
39 |
-
self.autoencoder = autoencoder
|
40 |
-
|
41 |
-
self.warmed_up = False
|
42 |
-
self.warmup_steps = warmup_steps
|
43 |
-
self.encoder_freeze_on_warmup = encoder_freeze_on_warmup
|
44 |
-
self.lr = lr
|
45 |
-
|
46 |
-
self.force_input_mono = force_input_mono
|
47 |
-
|
48 |
-
self.teacher_model = teacher_model
|
49 |
-
|
50 |
-
if optimizer_configs is None:
|
51 |
-
optimizer_configs ={
|
52 |
-
"autoencoder": {
|
53 |
-
"optimizer": {
|
54 |
-
"type": "AdamW",
|
55 |
-
"config": {
|
56 |
-
"lr": lr,
|
57 |
-
"betas": (.8, .99)
|
58 |
-
}
|
59 |
-
}
|
60 |
-
},
|
61 |
-
"discriminator": {
|
62 |
-
"optimizer": {
|
63 |
-
"type": "AdamW",
|
64 |
-
"config": {
|
65 |
-
"lr": lr,
|
66 |
-
"betas": (.8, .99)
|
67 |
-
}
|
68 |
-
}
|
69 |
-
}
|
70 |
-
|
71 |
-
}
|
72 |
-
|
73 |
-
self.optimizer_configs = optimizer_configs
|
74 |
-
|
75 |
-
if loss_config is None:
|
76 |
-
scales = [2048, 1024, 512, 256, 128, 64, 32]
|
77 |
-
hop_sizes = []
|
78 |
-
win_lengths = []
|
79 |
-
overlap = 0.75
|
80 |
-
for s in scales:
|
81 |
-
hop_sizes.append(int(s * (1 - overlap)))
|
82 |
-
win_lengths.append(s)
|
83 |
-
|
84 |
-
loss_config = {
|
85 |
-
"discriminator": {
|
86 |
-
"type": "encodec",
|
87 |
-
"config": {
|
88 |
-
"n_ffts": scales,
|
89 |
-
"hop_lengths": hop_sizes,
|
90 |
-
"win_lengths": win_lengths,
|
91 |
-
"filters": 32
|
92 |
-
},
|
93 |
-
"weights": {
|
94 |
-
"adversarial": 0.1,
|
95 |
-
"feature_matching": 5.0,
|
96 |
-
}
|
97 |
-
},
|
98 |
-
"spectral": {
|
99 |
-
"type": "mrstft",
|
100 |
-
"config": {
|
101 |
-
"fft_sizes": scales,
|
102 |
-
"hop_sizes": hop_sizes,
|
103 |
-
"win_lengths": win_lengths,
|
104 |
-
"perceptual_weighting": True
|
105 |
-
},
|
106 |
-
"weights": {
|
107 |
-
"mrstft": 1.0,
|
108 |
-
}
|
109 |
-
},
|
110 |
-
"time": {
|
111 |
-
"type": "l1",
|
112 |
-
"config": {},
|
113 |
-
"weights": {
|
114 |
-
"l1": 0.0,
|
115 |
-
}
|
116 |
-
}
|
117 |
-
}
|
118 |
-
|
119 |
-
self.loss_config = loss_config
|
120 |
-
|
121 |
-
# Spectral reconstruction loss
|
122 |
-
|
123 |
-
stft_loss_args = loss_config['spectral']['config']
|
124 |
-
|
125 |
-
if self.autoencoder.out_channels == 2:
|
126 |
-
self.sdstft = SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
127 |
-
self.lrstft = MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
128 |
-
else:
|
129 |
-
self.sdstft = MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
130 |
-
|
131 |
-
# Discriminator
|
132 |
-
|
133 |
-
if loss_config['discriminator']['type'] == 'oobleck':
|
134 |
-
self.discriminator = OobleckDiscriminator(**loss_config['discriminator']['config'])
|
135 |
-
elif loss_config['discriminator']['type'] == 'encodec':
|
136 |
-
self.discriminator = EncodecDiscriminator(in_channels=self.autoencoder.out_channels, **loss_config['discriminator']['config'])
|
137 |
-
elif loss_config['discriminator']['type'] == 'dac':
|
138 |
-
self.discriminator = DACGANLoss(channels=self.autoencoder.out_channels, sample_rate=sample_rate, **loss_config['discriminator']['config'])
|
139 |
-
|
140 |
-
self.gen_loss_modules = []
|
141 |
-
|
142 |
-
# Adversarial and feature matching losses
|
143 |
-
self.gen_loss_modules += [
|
144 |
-
ValueLoss(key='loss_adv', weight=self.loss_config['discriminator']['weights']['adversarial'], name='loss_adv'),
|
145 |
-
ValueLoss(key='feature_matching_distance', weight=self.loss_config['discriminator']['weights']['feature_matching'], name='feature_matching'),
|
146 |
-
]
|
147 |
-
|
148 |
-
if self.teacher_model is not None:
|
149 |
-
# Distillation losses
|
150 |
-
|
151 |
-
stft_loss_weight = self.loss_config['spectral']['weights']['mrstft'] * 0.25
|
152 |
-
self.gen_loss_modules += [
|
153 |
-
AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=stft_loss_weight), # Reconstruction loss
|
154 |
-
AuralossLoss(self.sdstft, 'decoded', 'teacher_decoded', name='mrstft_loss_distill', weight=stft_loss_weight), # Distilled model's decoder is compatible with teacher's decoder
|
155 |
-
AuralossLoss(self.sdstft, 'reals', 'own_latents_teacher_decoded', name='mrstft_loss_own_latents_teacher', weight=stft_loss_weight), # Distilled model's encoder is compatible with teacher's decoder
|
156 |
-
AuralossLoss(self.sdstft, 'reals', 'teacher_latents_own_decoded', name='mrstft_loss_teacher_latents_own', weight=stft_loss_weight) # Teacher's encoder is compatible with distilled model's decoder
|
157 |
-
]
|
158 |
-
|
159 |
-
else:
|
160 |
-
|
161 |
-
# Reconstruction loss
|
162 |
-
self.gen_loss_modules += [
|
163 |
-
AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=self.loss_config['spectral']['weights']['mrstft']),
|
164 |
-
]
|
165 |
-
|
166 |
-
if self.autoencoder.out_channels == 2:
|
167 |
-
|
168 |
-
# Add left and right channel reconstruction losses in addition to the sum and difference
|
169 |
-
self.gen_loss_modules += [
|
170 |
-
AuralossLoss(self.lrstft, 'reals_left', 'decoded_left', name='stft_loss_left', weight=self.loss_config['spectral']['weights']['mrstft']/2),
|
171 |
-
AuralossLoss(self.lrstft, 'reals_right', 'decoded_right', name='stft_loss_right', weight=self.loss_config['spectral']['weights']['mrstft']/2),
|
172 |
-
]
|
173 |
-
|
174 |
-
self.gen_loss_modules += [
|
175 |
-
AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=self.loss_config['spectral']['weights']['mrstft']),
|
176 |
-
]
|
177 |
-
|
178 |
-
if self.loss_config['time']['weights']['l1'] > 0.0:
|
179 |
-
self.gen_loss_modules.append(L1Loss(key_a='reals', key_b='decoded', weight=self.loss_config['time']['weights']['l1'], name='l1_time_loss'))
|
180 |
-
|
181 |
-
if self.autoencoder.bottleneck is not None:
|
182 |
-
self.gen_loss_modules += create_loss_modules_from_bottleneck(self.autoencoder.bottleneck, self.loss_config)
|
183 |
-
|
184 |
-
self.losses_gen = MultiLoss(self.gen_loss_modules)
|
185 |
-
|
186 |
-
self.disc_loss_modules = [
|
187 |
-
ValueLoss(key='loss_dis', weight=1.0, name='discriminator_loss'),
|
188 |
-
]
|
189 |
-
|
190 |
-
self.losses_disc = MultiLoss(self.disc_loss_modules)
|
191 |
-
|
192 |
-
# Set up EMA for model weights
|
193 |
-
self.autoencoder_ema = None
|
194 |
-
|
195 |
-
self.use_ema = use_ema
|
196 |
-
|
197 |
-
if self.use_ema:
|
198 |
-
self.autoencoder_ema = EMA(
|
199 |
-
self.autoencoder,
|
200 |
-
ema_model=ema_copy,
|
201 |
-
beta=0.9999,
|
202 |
-
power=3/4,
|
203 |
-
update_every=1,
|
204 |
-
update_after_step=1
|
205 |
-
)
|
206 |
-
|
207 |
-
self.latent_mask_ratio = latent_mask_ratio
|
208 |
-
|
209 |
-
def configure_optimizers(self):
|
210 |
-
|
211 |
-
opt_gen = create_optimizer_from_config(self.optimizer_configs['autoencoder']['optimizer'], self.autoencoder.parameters())
|
212 |
-
opt_disc = create_optimizer_from_config(self.optimizer_configs['discriminator']['optimizer'], self.discriminator.parameters())
|
213 |
-
|
214 |
-
if "scheduler" in self.optimizer_configs['autoencoder'] and "scheduler" in self.optimizer_configs['discriminator']:
|
215 |
-
sched_gen = create_scheduler_from_config(self.optimizer_configs['autoencoder']['scheduler'], opt_gen)
|
216 |
-
sched_disc = create_scheduler_from_config(self.optimizer_configs['discriminator']['scheduler'], opt_disc)
|
217 |
-
return [opt_gen, opt_disc], [sched_gen, sched_disc]
|
218 |
-
|
219 |
-
return [opt_gen, opt_disc]
|
220 |
-
|
221 |
-
def training_step(self, batch, batch_idx):
|
222 |
-
reals, _ = batch
|
223 |
-
|
224 |
-
# Remove extra dimension added by WebDataset
|
225 |
-
if reals.ndim == 4 and reals.shape[0] == 1:
|
226 |
-
reals = reals[0]
|
227 |
-
|
228 |
-
if self.global_step >= self.warmup_steps:
|
229 |
-
self.warmed_up = True
|
230 |
-
|
231 |
-
loss_info = {}
|
232 |
-
|
233 |
-
loss_info["reals"] = reals
|
234 |
-
|
235 |
-
encoder_input = reals
|
236 |
-
|
237 |
-
if self.force_input_mono and encoder_input.shape[1] > 1:
|
238 |
-
encoder_input = encoder_input.mean(dim=1, keepdim=True)
|
239 |
-
|
240 |
-
loss_info["encoder_input"] = encoder_input
|
241 |
-
|
242 |
-
data_std = encoder_input.std()
|
243 |
-
|
244 |
-
if self.warmed_up and self.encoder_freeze_on_warmup:
|
245 |
-
with torch.no_grad():
|
246 |
-
latents, encoder_info = self.autoencoder.encode(encoder_input, return_info=True)
|
247 |
-
else:
|
248 |
-
latents, encoder_info = self.autoencoder.encode(encoder_input, return_info=True)
|
249 |
-
|
250 |
-
loss_info["latents"] = latents
|
251 |
-
|
252 |
-
loss_info.update(encoder_info)
|
253 |
-
|
254 |
-
# Encode with teacher model for distillation
|
255 |
-
if self.teacher_model is not None:
|
256 |
-
with torch.no_grad():
|
257 |
-
teacher_latents = self.teacher_model.encode(encoder_input, return_info=False)
|
258 |
-
loss_info['teacher_latents'] = teacher_latents
|
259 |
-
|
260 |
-
# Optionally mask out some latents for noise resistance
|
261 |
-
if self.latent_mask_ratio > 0.0:
|
262 |
-
mask = torch.rand_like(latents) < self.latent_mask_ratio
|
263 |
-
latents = torch.where(mask, torch.zeros_like(latents), latents)
|
264 |
-
|
265 |
-
decoded = self.autoencoder.decode(latents)
|
266 |
-
|
267 |
-
loss_info["decoded"] = decoded
|
268 |
-
|
269 |
-
if self.autoencoder.out_channels == 2:
|
270 |
-
loss_info["decoded_left"] = decoded[:, 0:1, :]
|
271 |
-
loss_info["decoded_right"] = decoded[:, 1:2, :]
|
272 |
-
loss_info["reals_left"] = reals[:, 0:1, :]
|
273 |
-
loss_info["reals_right"] = reals[:, 1:2, :]
|
274 |
-
|
275 |
-
# Distillation
|
276 |
-
if self.teacher_model is not None:
|
277 |
-
with torch.no_grad():
|
278 |
-
teacher_decoded = self.teacher_model.decode(teacher_latents)
|
279 |
-
own_latents_teacher_decoded = self.teacher_model.decode(latents) #Distilled model's latents decoded by teacher
|
280 |
-
teacher_latents_own_decoded = self.autoencoder.decode(teacher_latents) #Teacher's latents decoded by distilled model
|
281 |
-
|
282 |
-
loss_info['teacher_decoded'] = teacher_decoded
|
283 |
-
loss_info['own_latents_teacher_decoded'] = own_latents_teacher_decoded
|
284 |
-
loss_info['teacher_latents_own_decoded'] = teacher_latents_own_decoded
|
285 |
-
|
286 |
-
|
287 |
-
if self.warmed_up:
|
288 |
-
loss_dis, loss_adv, feature_matching_distance = self.discriminator.loss(reals, decoded)
|
289 |
-
else:
|
290 |
-
loss_dis = torch.tensor(0.).to(reals)
|
291 |
-
loss_adv = torch.tensor(0.).to(reals)
|
292 |
-
feature_matching_distance = torch.tensor(0.).to(reals)
|
293 |
-
|
294 |
-
loss_info["loss_dis"] = loss_dis
|
295 |
-
loss_info["loss_adv"] = loss_adv
|
296 |
-
loss_info["feature_matching_distance"] = feature_matching_distance
|
297 |
-
|
298 |
-
opt_gen, opt_disc = self.optimizers()
|
299 |
-
|
300 |
-
lr_schedulers = self.lr_schedulers()
|
301 |
-
|
302 |
-
sched_gen = None
|
303 |
-
sched_disc = None
|
304 |
-
|
305 |
-
if lr_schedulers is not None:
|
306 |
-
sched_gen, sched_disc = lr_schedulers
|
307 |
-
|
308 |
-
# Train the discriminator
|
309 |
-
if self.global_step % 2 and self.warmed_up:
|
310 |
-
loss, losses = self.losses_disc(loss_info)
|
311 |
-
|
312 |
-
log_dict = {
|
313 |
-
'train/disc_lr': opt_disc.param_groups[0]['lr']
|
314 |
-
}
|
315 |
-
|
316 |
-
opt_disc.zero_grad()
|
317 |
-
self.manual_backward(loss)
|
318 |
-
opt_disc.step()
|
319 |
-
|
320 |
-
if sched_disc is not None:
|
321 |
-
# sched step every step
|
322 |
-
sched_disc.step()
|
323 |
-
|
324 |
-
# Train the generator
|
325 |
-
else:
|
326 |
-
|
327 |
-
loss, losses = self.losses_gen(loss_info)
|
328 |
-
|
329 |
-
if self.use_ema:
|
330 |
-
self.autoencoder_ema.update()
|
331 |
-
|
332 |
-
opt_gen.zero_grad()
|
333 |
-
self.manual_backward(loss)
|
334 |
-
opt_gen.step()
|
335 |
-
|
336 |
-
if sched_gen is not None:
|
337 |
-
# scheduler step every step
|
338 |
-
sched_gen.step()
|
339 |
-
|
340 |
-
log_dict = {
|
341 |
-
'train/loss': loss.detach(),
|
342 |
-
'train/latent_std': latents.std().detach(),
|
343 |
-
'train/data_std': data_std.detach(),
|
344 |
-
'train/gen_lr': opt_gen.param_groups[0]['lr']
|
345 |
-
}
|
346 |
-
|
347 |
-
for loss_name, loss_value in losses.items():
|
348 |
-
log_dict[f'train/{loss_name}'] = loss_value.detach()
|
349 |
-
|
350 |
-
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
351 |
-
|
352 |
-
return loss
|
353 |
-
|
354 |
-
def export_model(self, path, use_safetensors=False):
|
355 |
-
if self.autoencoder_ema is not None:
|
356 |
-
model = self.autoencoder_ema.ema_model
|
357 |
-
else:
|
358 |
-
model = self.autoencoder
|
359 |
-
|
360 |
-
if use_safetensors:
|
361 |
-
save_model(model, path)
|
362 |
-
else:
|
363 |
-
torch.save({"state_dict": model.state_dict()}, path)
|
364 |
-
|
365 |
-
|
366 |
-
class AutoencoderDemoCallback(pl.Callback):
|
367 |
-
def __init__(
|
368 |
-
self,
|
369 |
-
demo_dl,
|
370 |
-
demo_every=2000,
|
371 |
-
sample_size=65536,
|
372 |
-
sample_rate=48000
|
373 |
-
):
|
374 |
-
super().__init__()
|
375 |
-
self.demo_every = demo_every
|
376 |
-
self.demo_samples = sample_size
|
377 |
-
self.demo_dl = iter(demo_dl)
|
378 |
-
self.sample_rate = sample_rate
|
379 |
-
self.last_demo_step = -1
|
380 |
-
|
381 |
-
@rank_zero_only
|
382 |
-
@torch.no_grad()
|
383 |
-
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):
|
384 |
-
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
385 |
-
return
|
386 |
-
|
387 |
-
self.last_demo_step = trainer.global_step
|
388 |
-
|
389 |
-
module.eval()
|
390 |
-
|
391 |
-
try:
|
392 |
-
demo_reals, _ = next(self.demo_dl)
|
393 |
-
|
394 |
-
# Remove extra dimension added by WebDataset
|
395 |
-
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
|
396 |
-
demo_reals = demo_reals[0]
|
397 |
-
|
398 |
-
encoder_input = demo_reals
|
399 |
-
|
400 |
-
encoder_input = encoder_input.to(module.device)
|
401 |
-
|
402 |
-
if module.force_input_mono:
|
403 |
-
encoder_input = encoder_input.mean(dim=1, keepdim=True)
|
404 |
-
|
405 |
-
demo_reals = demo_reals.to(module.device)
|
406 |
-
|
407 |
-
with torch.no_grad():
|
408 |
-
if module.use_ema:
|
409 |
-
|
410 |
-
latents = module.autoencoder_ema.ema_model.encode(encoder_input)
|
411 |
-
|
412 |
-
fakes = module.autoencoder_ema.ema_model.decode(latents)
|
413 |
-
else:
|
414 |
-
latents = module.autoencoder.encode(encoder_input)
|
415 |
-
|
416 |
-
fakes = module.autoencoder.decode(latents)
|
417 |
-
|
418 |
-
#Interleave reals and fakes
|
419 |
-
reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n')
|
420 |
-
|
421 |
-
# Put the demos together
|
422 |
-
reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)')
|
423 |
-
|
424 |
-
log_dict = {}
|
425 |
-
|
426 |
-
filename = f'recon_{trainer.global_step:08}.wav'
|
427 |
-
reals_fakes = reals_fakes.to(torch.float32).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
428 |
-
torchaudio.save(filename, reals_fakes, self.sample_rate)
|
429 |
-
|
430 |
-
log_dict[f'recon'] = wandb.Audio(filename,
|
431 |
-
sample_rate=self.sample_rate,
|
432 |
-
caption=f'Reconstructed')
|
433 |
-
|
434 |
-
log_dict[f'embeddings_3dpca'] = pca_point_cloud(latents)
|
435 |
-
log_dict[f'embeddings_spec'] = wandb.Image(tokens_spectrogram_image(latents))
|
436 |
-
|
437 |
-
log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes))
|
438 |
-
|
439 |
-
trainer.logger.experiment.log(log_dict)
|
440 |
-
except Exception as e:
|
441 |
-
print(f'{type(e).__name__}: {e}')
|
442 |
-
raise e
|
443 |
-
finally:
|
444 |
-
module.train()
|
445 |
-
|
446 |
-
def create_loss_modules_from_bottleneck(bottleneck, loss_config):
|
447 |
-
losses = []
|
448 |
-
|
449 |
-
if isinstance(bottleneck, VAEBottleneck) or isinstance(bottleneck, DACRVQVAEBottleneck) or isinstance(bottleneck, RVQVAEBottleneck):
|
450 |
-
try:
|
451 |
-
kl_weight = loss_config['bottleneck']['weights']['kl']
|
452 |
-
except:
|
453 |
-
kl_weight = 1e-6
|
454 |
-
|
455 |
-
kl_loss = ValueLoss(key='kl', weight=kl_weight, name='kl_loss')
|
456 |
-
losses.append(kl_loss)
|
457 |
-
|
458 |
-
if isinstance(bottleneck, RVQBottleneck) or isinstance(bottleneck, RVQVAEBottleneck):
|
459 |
-
quantizer_loss = ValueLoss(key='quantizer_loss', weight=1.0, name='quantizer_loss')
|
460 |
-
losses.append(quantizer_loss)
|
461 |
-
|
462 |
-
if isinstance(bottleneck, DACRVQBottleneck) or isinstance(bottleneck, DACRVQVAEBottleneck):
|
463 |
-
codebook_loss = ValueLoss(key='vq/codebook_loss', weight=1.0, name='codebook_loss')
|
464 |
-
commitment_loss = ValueLoss(key='vq/commitment_loss', weight=0.25, name='commitment_loss')
|
465 |
-
losses.append(codebook_loss)
|
466 |
-
losses.append(commitment_loss)
|
467 |
-
|
468 |
-
if isinstance(bottleneck, WassersteinBottleneck):
|
469 |
-
try:
|
470 |
-
mmd_weight = loss_config['bottleneck']['weights']['mmd']
|
471 |
-
except:
|
472 |
-
mmd_weight = 100
|
473 |
-
|
474 |
-
mmd_loss = ValueLoss(key='mmd', weight=mmd_weight, name='mmd_loss')
|
475 |
-
losses.append(mmd_loss)
|
476 |
-
|
477 |
-
return losses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/training/diffusion.py
DELETED
@@ -1,1505 +0,0 @@
|
|
1 |
-
import pytorch_lightning as pl
|
2 |
-
import sys, gc
|
3 |
-
import random
|
4 |
-
import torch
|
5 |
-
import torchaudio
|
6 |
-
import typing as tp
|
7 |
-
import wandb
|
8 |
-
|
9 |
-
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
|
10 |
-
import auraloss
|
11 |
-
from ema_pytorch import EMA
|
12 |
-
from einops import rearrange
|
13 |
-
from safetensors.torch import save_file
|
14 |
-
from torch import optim
|
15 |
-
from torch.nn import functional as F
|
16 |
-
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
17 |
-
|
18 |
-
from ..inference.sampling import get_alphas_sigmas, sample, sample_discrete_euler
|
19 |
-
from ..models.diffusion import DiffusionModelWrapper, ConditionedDiffusionModelWrapper
|
20 |
-
from ..models.autoencoders import DiffusionAutoencoder
|
21 |
-
from ..models.diffusion_prior import PriorType
|
22 |
-
from .autoencoders import create_loss_modules_from_bottleneck
|
23 |
-
from .losses import AuralossLoss, MSELoss, MultiLoss
|
24 |
-
from .utils import create_optimizer_from_config, create_scheduler_from_config
|
25 |
-
|
26 |
-
from time import time
|
27 |
-
|
28 |
-
class Profiler:
|
29 |
-
|
30 |
-
def __init__(self):
|
31 |
-
self.ticks = [[time(), None]]
|
32 |
-
|
33 |
-
def tick(self, msg):
|
34 |
-
self.ticks.append([time(), msg])
|
35 |
-
|
36 |
-
def __repr__(self):
|
37 |
-
rep = 80 * "=" + "\n"
|
38 |
-
for i in range(1, len(self.ticks)):
|
39 |
-
msg = self.ticks[i][1]
|
40 |
-
ellapsed = self.ticks[i][0] - self.ticks[i - 1][0]
|
41 |
-
rep += msg + f": {ellapsed*1000:.2f}ms\n"
|
42 |
-
rep += 80 * "=" + "\n\n\n"
|
43 |
-
return rep
|
44 |
-
|
45 |
-
class DiffusionUncondTrainingWrapper(pl.LightningModule):
|
46 |
-
'''
|
47 |
-
Wrapper for training an unconditional audio diffusion model (like Dance Diffusion).
|
48 |
-
'''
|
49 |
-
def __init__(
|
50 |
-
self,
|
51 |
-
model: DiffusionModelWrapper,
|
52 |
-
lr: float = 1e-4,
|
53 |
-
pre_encoded: bool = False
|
54 |
-
):
|
55 |
-
super().__init__()
|
56 |
-
|
57 |
-
self.diffusion = model
|
58 |
-
|
59 |
-
self.diffusion_ema = EMA(
|
60 |
-
self.diffusion.model,
|
61 |
-
beta=0.9999,
|
62 |
-
power=3/4,
|
63 |
-
update_every=1,
|
64 |
-
update_after_step=1
|
65 |
-
)
|
66 |
-
|
67 |
-
self.lr = lr
|
68 |
-
|
69 |
-
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
70 |
-
|
71 |
-
loss_modules = [
|
72 |
-
MSELoss("v",
|
73 |
-
"targets",
|
74 |
-
weight=1.0,
|
75 |
-
name="mse_loss"
|
76 |
-
)
|
77 |
-
]
|
78 |
-
|
79 |
-
self.losses = MultiLoss(loss_modules)
|
80 |
-
|
81 |
-
self.pre_encoded = pre_encoded
|
82 |
-
|
83 |
-
def configure_optimizers(self):
|
84 |
-
return optim.Adam([*self.diffusion.parameters()], lr=self.lr)
|
85 |
-
|
86 |
-
def training_step(self, batch, batch_idx):
|
87 |
-
reals = batch[0]
|
88 |
-
|
89 |
-
if reals.ndim == 4 and reals.shape[0] == 1:
|
90 |
-
reals = reals[0]
|
91 |
-
|
92 |
-
diffusion_input = reals
|
93 |
-
|
94 |
-
loss_info = {}
|
95 |
-
|
96 |
-
if not self.pre_encoded:
|
97 |
-
loss_info["audio_reals"] = diffusion_input
|
98 |
-
|
99 |
-
if self.diffusion.pretransform is not None:
|
100 |
-
if not self.pre_encoded:
|
101 |
-
with torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
|
102 |
-
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
|
103 |
-
else:
|
104 |
-
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
|
105 |
-
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
|
106 |
-
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
|
107 |
-
|
108 |
-
loss_info["reals"] = diffusion_input
|
109 |
-
|
110 |
-
# Draw uniformly distributed continuous timesteps
|
111 |
-
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
112 |
-
|
113 |
-
# Calculate the noise schedule parameters for those timesteps
|
114 |
-
alphas, sigmas = get_alphas_sigmas(t)
|
115 |
-
|
116 |
-
# Combine the ground truth data and the noise
|
117 |
-
alphas = alphas[:, None, None]
|
118 |
-
sigmas = sigmas[:, None, None]
|
119 |
-
noise = torch.randn_like(diffusion_input)
|
120 |
-
noised_inputs = diffusion_input * alphas + noise * sigmas
|
121 |
-
targets = noise * alphas - diffusion_input * sigmas
|
122 |
-
|
123 |
-
with torch.cuda.amp.autocast():
|
124 |
-
v = self.diffusion(noised_inputs, t)
|
125 |
-
|
126 |
-
loss_info.update({
|
127 |
-
"v": v,
|
128 |
-
"targets": targets
|
129 |
-
})
|
130 |
-
|
131 |
-
loss, losses = self.losses(loss_info)
|
132 |
-
|
133 |
-
log_dict = {
|
134 |
-
'train/loss': loss.detach(),
|
135 |
-
'train/std_data': diffusion_input.std(),
|
136 |
-
}
|
137 |
-
|
138 |
-
for loss_name, loss_value in losses.items():
|
139 |
-
log_dict[f"train/{loss_name}"] = loss_value.detach()
|
140 |
-
|
141 |
-
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
142 |
-
return loss
|
143 |
-
|
144 |
-
def on_before_zero_grad(self, *args, **kwargs):
|
145 |
-
self.diffusion_ema.update()
|
146 |
-
|
147 |
-
def export_model(self, path, use_safetensors=False):
|
148 |
-
|
149 |
-
self.diffusion.model = self.diffusion_ema.ema_model
|
150 |
-
|
151 |
-
if use_safetensors:
|
152 |
-
save_file(self.diffusion.state_dict(), path)
|
153 |
-
else:
|
154 |
-
torch.save({"state_dict": self.diffusion.state_dict()}, path)
|
155 |
-
|
156 |
-
class DiffusionUncondDemoCallback(pl.Callback):
|
157 |
-
def __init__(self,
|
158 |
-
demo_every=2000,
|
159 |
-
num_demos=8,
|
160 |
-
demo_steps=250,
|
161 |
-
sample_rate=48000
|
162 |
-
):
|
163 |
-
super().__init__()
|
164 |
-
|
165 |
-
self.demo_every = demo_every
|
166 |
-
self.num_demos = num_demos
|
167 |
-
self.demo_steps = demo_steps
|
168 |
-
self.sample_rate = sample_rate
|
169 |
-
self.last_demo_step = -1
|
170 |
-
|
171 |
-
@rank_zero_only
|
172 |
-
@torch.no_grad()
|
173 |
-
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):
|
174 |
-
|
175 |
-
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
176 |
-
return
|
177 |
-
|
178 |
-
self.last_demo_step = trainer.global_step
|
179 |
-
|
180 |
-
demo_samples = module.diffusion.sample_size
|
181 |
-
|
182 |
-
if module.diffusion.pretransform is not None:
|
183 |
-
demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio
|
184 |
-
|
185 |
-
noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device)
|
186 |
-
|
187 |
-
try:
|
188 |
-
with torch.cuda.amp.autocast():
|
189 |
-
fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0)
|
190 |
-
|
191 |
-
if module.diffusion.pretransform is not None:
|
192 |
-
fakes = module.diffusion.pretransform.decode(fakes)
|
193 |
-
|
194 |
-
# Put the demos together
|
195 |
-
fakes = rearrange(fakes, 'b d n -> d (b n)')
|
196 |
-
|
197 |
-
log_dict = {}
|
198 |
-
|
199 |
-
filename = f'demo_{trainer.global_step:08}.wav'
|
200 |
-
fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
|
201 |
-
torchaudio.save(filename, fakes, self.sample_rate)
|
202 |
-
|
203 |
-
log_dict[f'demo'] = wandb.Audio(filename,
|
204 |
-
sample_rate=self.sample_rate,
|
205 |
-
caption=f'Reconstructed')
|
206 |
-
|
207 |
-
log_dict[f'demo_melspec_left'] = wandb.Image(audio_spectrogram_image(fakes))
|
208 |
-
|
209 |
-
trainer.logger.experiment.log(log_dict)
|
210 |
-
|
211 |
-
del fakes
|
212 |
-
|
213 |
-
except Exception as e:
|
214 |
-
print(f'{type(e).__name__}: {e}')
|
215 |
-
finally:
|
216 |
-
gc.collect()
|
217 |
-
torch.cuda.empty_cache()
|
218 |
-
|
219 |
-
class DiffusionCondTrainingWrapper(pl.LightningModule):
|
220 |
-
'''
|
221 |
-
Wrapper for training a conditional audio diffusion model.
|
222 |
-
'''
|
223 |
-
def __init__(
|
224 |
-
self,
|
225 |
-
model: ConditionedDiffusionModelWrapper,
|
226 |
-
lr: float = None,
|
227 |
-
mask_padding: bool = False,
|
228 |
-
mask_padding_dropout: float = 0.0,
|
229 |
-
use_ema: bool = True,
|
230 |
-
log_loss_info: bool = False,
|
231 |
-
optimizer_configs: dict = None,
|
232 |
-
pre_encoded: bool = False,
|
233 |
-
cfg_dropout_prob = 0.1,
|
234 |
-
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
|
235 |
-
):
|
236 |
-
super().__init__()
|
237 |
-
|
238 |
-
self.diffusion = model
|
239 |
-
|
240 |
-
if use_ema:
|
241 |
-
self.diffusion_ema = EMA(
|
242 |
-
self.diffusion.model,
|
243 |
-
beta=0.9999,
|
244 |
-
power=3/4,
|
245 |
-
update_every=1,
|
246 |
-
update_after_step=1,
|
247 |
-
include_online_model=False
|
248 |
-
)
|
249 |
-
else:
|
250 |
-
self.diffusion_ema = None
|
251 |
-
|
252 |
-
self.mask_padding = mask_padding
|
253 |
-
self.mask_padding_dropout = mask_padding_dropout
|
254 |
-
|
255 |
-
self.cfg_dropout_prob = cfg_dropout_prob
|
256 |
-
|
257 |
-
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
258 |
-
|
259 |
-
self.timestep_sampler = timestep_sampler
|
260 |
-
|
261 |
-
self.diffusion_objective = model.diffusion_objective
|
262 |
-
|
263 |
-
self.loss_modules = [
|
264 |
-
MSELoss("output",
|
265 |
-
"targets",
|
266 |
-
weight=1.0,
|
267 |
-
mask_key="padding_mask" if self.mask_padding else None,
|
268 |
-
name="mse_loss"
|
269 |
-
)
|
270 |
-
]
|
271 |
-
|
272 |
-
self.losses = MultiLoss(self.loss_modules)
|
273 |
-
|
274 |
-
self.log_loss_info = log_loss_info
|
275 |
-
|
276 |
-
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"
|
277 |
-
|
278 |
-
if optimizer_configs is None:
|
279 |
-
optimizer_configs = {
|
280 |
-
"diffusion": {
|
281 |
-
"optimizer": {
|
282 |
-
"type": "Adam",
|
283 |
-
"config": {
|
284 |
-
"lr": lr
|
285 |
-
}
|
286 |
-
}
|
287 |
-
}
|
288 |
-
}
|
289 |
-
else:
|
290 |
-
if lr is not None:
|
291 |
-
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
|
292 |
-
|
293 |
-
self.optimizer_configs = optimizer_configs
|
294 |
-
|
295 |
-
self.pre_encoded = pre_encoded
|
296 |
-
|
297 |
-
def configure_optimizers(self):
|
298 |
-
diffusion_opt_config = self.optimizer_configs['diffusion']
|
299 |
-
opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters())
|
300 |
-
|
301 |
-
if "scheduler" in diffusion_opt_config:
|
302 |
-
sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff)
|
303 |
-
sched_diff_config = {
|
304 |
-
"scheduler": sched_diff,
|
305 |
-
"interval": "step"
|
306 |
-
}
|
307 |
-
return [opt_diff], [sched_diff_config]
|
308 |
-
|
309 |
-
return [opt_diff]
|
310 |
-
|
311 |
-
def training_step(self, batch, batch_idx):
|
312 |
-
reals, metadata = batch
|
313 |
-
|
314 |
-
p = Profiler()
|
315 |
-
|
316 |
-
if reals.ndim == 4 and reals.shape[0] == 1:
|
317 |
-
reals = reals[0]
|
318 |
-
|
319 |
-
loss_info = {}
|
320 |
-
|
321 |
-
diffusion_input = reals
|
322 |
-
|
323 |
-
if not self.pre_encoded:
|
324 |
-
loss_info["audio_reals"] = diffusion_input
|
325 |
-
|
326 |
-
p.tick("setup")
|
327 |
-
|
328 |
-
with torch.cuda.amp.autocast():
|
329 |
-
conditioning = self.diffusion.conditioner(metadata, self.device)
|
330 |
-
|
331 |
-
# If mask_padding is on, randomly drop the padding masks to allow for learning silence padding
|
332 |
-
use_padding_mask = self.mask_padding and random.random() > self.mask_padding_dropout
|
333 |
-
|
334 |
-
# Create batch tensor of attention masks from the "mask" field of the metadata array
|
335 |
-
if use_padding_mask:
|
336 |
-
padding_masks = torch.stack([md["padding_mask"][0] for md in metadata], dim=0).to(self.device) # Shape (batch_size, sequence_length)
|
337 |
-
|
338 |
-
p.tick("conditioning")
|
339 |
-
|
340 |
-
if self.diffusion.pretransform is not None:
|
341 |
-
self.diffusion.pretransform.to(self.device)
|
342 |
-
|
343 |
-
if not self.pre_encoded:
|
344 |
-
with torch.cuda.amp.autocast() and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
|
345 |
-
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
|
346 |
-
p.tick("pretransform")
|
347 |
-
|
348 |
-
# If mask_padding is on, interpolate the padding masks to the size of the pretransformed input
|
349 |
-
if use_padding_mask:
|
350 |
-
padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=diffusion_input.shape[2], mode="nearest").squeeze(1).bool()
|
351 |
-
else:
|
352 |
-
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
|
353 |
-
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
|
354 |
-
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
|
355 |
-
|
356 |
-
if self.timestep_sampler == "uniform":
|
357 |
-
# Draw uniformly distributed continuous timesteps
|
358 |
-
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
359 |
-
elif self.timestep_sampler == "logit_normal":
|
360 |
-
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
|
361 |
-
|
362 |
-
# Calculate the noise schedule parameters for those timesteps
|
363 |
-
if self.diffusion_objective == "v":
|
364 |
-
alphas, sigmas = get_alphas_sigmas(t)
|
365 |
-
elif self.diffusion_objective == "rectified_flow":
|
366 |
-
alphas, sigmas = 1-t, t
|
367 |
-
|
368 |
-
# Combine the ground truth data and the noise
|
369 |
-
alphas = alphas[:, None, None]
|
370 |
-
sigmas = sigmas[:, None, None]
|
371 |
-
noise = torch.randn_like(diffusion_input)
|
372 |
-
noised_inputs = diffusion_input * alphas + noise * sigmas
|
373 |
-
|
374 |
-
if self.diffusion_objective == "v":
|
375 |
-
targets = noise * alphas - diffusion_input * sigmas
|
376 |
-
elif self.diffusion_objective == "rectified_flow":
|
377 |
-
targets = noise - diffusion_input
|
378 |
-
|
379 |
-
p.tick("noise")
|
380 |
-
|
381 |
-
extra_args = {}
|
382 |
-
|
383 |
-
if use_padding_mask:
|
384 |
-
extra_args["mask"] = padding_masks
|
385 |
-
|
386 |
-
with torch.cuda.amp.autocast():
|
387 |
-
p.tick("amp")
|
388 |
-
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args)
|
389 |
-
p.tick("diffusion")
|
390 |
-
|
391 |
-
loss_info.update({
|
392 |
-
"output": output,
|
393 |
-
"targets": targets,
|
394 |
-
"padding_mask": padding_masks if use_padding_mask else None,
|
395 |
-
})
|
396 |
-
|
397 |
-
loss, losses = self.losses(loss_info)
|
398 |
-
|
399 |
-
p.tick("loss")
|
400 |
-
|
401 |
-
if self.log_loss_info:
|
402 |
-
# Loss debugging logs
|
403 |
-
num_loss_buckets = 10
|
404 |
-
bucket_size = 1 / num_loss_buckets
|
405 |
-
loss_all = F.mse_loss(output, targets, reduction="none")
|
406 |
-
|
407 |
-
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze()
|
408 |
-
|
409 |
-
# gather loss_all across all GPUs
|
410 |
-
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n")
|
411 |
-
|
412 |
-
# Bucket loss values based on corresponding sigma values, bucketing sigma values by bucket_size
|
413 |
-
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)])
|
414 |
-
|
415 |
-
# Log bucketed losses with corresponding sigma bucket values, if it's not NaN
|
416 |
-
debug_log_dict = {
|
417 |
-
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i])
|
418 |
-
}
|
419 |
-
|
420 |
-
self.log_dict(debug_log_dict)
|
421 |
-
|
422 |
-
|
423 |
-
log_dict = {
|
424 |
-
'train/loss': loss.detach(),
|
425 |
-
'train/std_data': diffusion_input.std(),
|
426 |
-
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
|
427 |
-
}
|
428 |
-
|
429 |
-
for loss_name, loss_value in losses.items():
|
430 |
-
log_dict[f"train/{loss_name}"] = loss_value.detach()
|
431 |
-
|
432 |
-
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
433 |
-
p.tick("log")
|
434 |
-
#print(f"Profiler: {p}")
|
435 |
-
return loss
|
436 |
-
|
437 |
-
def on_before_zero_grad(self, *args, **kwargs):
|
438 |
-
if self.diffusion_ema is not None:
|
439 |
-
self.diffusion_ema.update()
|
440 |
-
|
441 |
-
def export_model(self, path, use_safetensors=False):
|
442 |
-
if self.diffusion_ema is not None:
|
443 |
-
self.diffusion.model = self.diffusion_ema.ema_model
|
444 |
-
|
445 |
-
if use_safetensors:
|
446 |
-
save_file(self.diffusion.state_dict(), path)
|
447 |
-
else:
|
448 |
-
torch.save({"state_dict": self.diffusion.state_dict()}, path)
|
449 |
-
|
450 |
-
class DiffusionCondDemoCallback(pl.Callback):
|
451 |
-
def __init__(self,
|
452 |
-
demo_every=2000,
|
453 |
-
num_demos=8,
|
454 |
-
sample_size=65536,
|
455 |
-
demo_steps=250,
|
456 |
-
sample_rate=48000,
|
457 |
-
demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = {},
|
458 |
-
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7],
|
459 |
-
demo_cond_from_batch: bool = False,
|
460 |
-
display_audio_cond: bool = False
|
461 |
-
):
|
462 |
-
super().__init__()
|
463 |
-
|
464 |
-
self.demo_every = demo_every
|
465 |
-
self.num_demos = num_demos
|
466 |
-
self.demo_samples = sample_size
|
467 |
-
self.demo_steps = demo_steps
|
468 |
-
self.sample_rate = sample_rate
|
469 |
-
self.last_demo_step = -1
|
470 |
-
self.demo_conditioning = demo_conditioning
|
471 |
-
self.demo_cfg_scales = demo_cfg_scales
|
472 |
-
|
473 |
-
# If true, the callback will use the metadata from the batch to generate the demo conditioning
|
474 |
-
self.demo_cond_from_batch = demo_cond_from_batch
|
475 |
-
|
476 |
-
# If true, the callback will display the audio conditioning
|
477 |
-
self.display_audio_cond = display_audio_cond
|
478 |
-
|
479 |
-
@rank_zero_only
|
480 |
-
@torch.no_grad()
|
481 |
-
def on_train_batch_end(self, trainer, module: DiffusionCondTrainingWrapper, outputs, batch, batch_idx):
|
482 |
-
|
483 |
-
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
484 |
-
return
|
485 |
-
|
486 |
-
module.eval()
|
487 |
-
|
488 |
-
print(f"Generating demo")
|
489 |
-
self.last_demo_step = trainer.global_step
|
490 |
-
|
491 |
-
demo_samples = self.demo_samples
|
492 |
-
|
493 |
-
demo_cond = self.demo_conditioning
|
494 |
-
|
495 |
-
if self.demo_cond_from_batch:
|
496 |
-
# Get metadata from the batch
|
497 |
-
demo_cond = batch[1][:self.num_demos]
|
498 |
-
|
499 |
-
if module.diffusion.pretransform is not None:
|
500 |
-
demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio
|
501 |
-
|
502 |
-
noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device)
|
503 |
-
|
504 |
-
try:
|
505 |
-
print("Getting conditioning")
|
506 |
-
with torch.cuda.amp.autocast():
|
507 |
-
conditioning = module.diffusion.conditioner(demo_cond, module.device)
|
508 |
-
|
509 |
-
cond_inputs = module.diffusion.get_conditioning_inputs(conditioning)
|
510 |
-
|
511 |
-
log_dict = {}
|
512 |
-
|
513 |
-
if self.display_audio_cond:
|
514 |
-
audio_inputs = torch.cat([cond["audio"] for cond in demo_cond], dim=0)
|
515 |
-
audio_inputs = rearrange(audio_inputs, 'b d n -> d (b n)')
|
516 |
-
|
517 |
-
filename = f'demo_audio_cond_{trainer.global_step:08}.wav'
|
518 |
-
audio_inputs = audio_inputs.to(torch.float32).mul(32767).to(torch.int16).cpu()
|
519 |
-
torchaudio.save(filename, audio_inputs, self.sample_rate)
|
520 |
-
log_dict[f'demo_audio_cond'] = wandb.Audio(filename, sample_rate=self.sample_rate, caption="Audio conditioning")
|
521 |
-
log_dict[f"demo_audio_cond_melspec_left"] = wandb.Image(audio_spectrogram_image(audio_inputs))
|
522 |
-
trainer.logger.experiment.log(log_dict)
|
523 |
-
|
524 |
-
for cfg_scale in self.demo_cfg_scales:
|
525 |
-
|
526 |
-
print(f"Generating demo for cfg scale {cfg_scale}")
|
527 |
-
|
528 |
-
with torch.cuda.amp.autocast():
|
529 |
-
model = module.diffusion_ema.model if module.diffusion_ema is not None else module.diffusion.model
|
530 |
-
|
531 |
-
if module.diffusion_objective == "v":
|
532 |
-
fakes = sample(model, noise, self.demo_steps, 0, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
|
533 |
-
elif module.diffusion_objective == "rectified_flow":
|
534 |
-
fakes = sample_discrete_euler(model, noise, self.demo_steps, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
|
535 |
-
|
536 |
-
if module.diffusion.pretransform is not None:
|
537 |
-
fakes = module.diffusion.pretransform.decode(fakes)
|
538 |
-
|
539 |
-
# Put the demos together
|
540 |
-
fakes = rearrange(fakes, 'b d n -> d (b n)')
|
541 |
-
|
542 |
-
log_dict = {}
|
543 |
-
|
544 |
-
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
|
545 |
-
fakes = fakes.div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
|
546 |
-
torchaudio.save(filename, fakes, self.sample_rate)
|
547 |
-
|
548 |
-
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
|
549 |
-
sample_rate=self.sample_rate,
|
550 |
-
caption=f'Reconstructed')
|
551 |
-
|
552 |
-
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
|
553 |
-
|
554 |
-
trainer.logger.experiment.log(log_dict)
|
555 |
-
|
556 |
-
del fakes
|
557 |
-
|
558 |
-
except Exception as e:
|
559 |
-
raise e
|
560 |
-
finally:
|
561 |
-
gc.collect()
|
562 |
-
torch.cuda.empty_cache()
|
563 |
-
module.train()
|
564 |
-
|
565 |
-
class DiffusionCondInpaintTrainingWrapper(pl.LightningModule):
|
566 |
-
'''
|
567 |
-
Wrapper for training a conditional audio diffusion model.
|
568 |
-
'''
|
569 |
-
def __init__(
|
570 |
-
self,
|
571 |
-
model: ConditionedDiffusionModelWrapper,
|
572 |
-
lr: float = 1e-4,
|
573 |
-
max_mask_segments = 10,
|
574 |
-
log_loss_info: bool = False,
|
575 |
-
optimizer_configs: dict = None,
|
576 |
-
use_ema: bool = True,
|
577 |
-
pre_encoded: bool = False,
|
578 |
-
cfg_dropout_prob = 0.1,
|
579 |
-
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
|
580 |
-
):
|
581 |
-
super().__init__()
|
582 |
-
|
583 |
-
self.diffusion = model
|
584 |
-
|
585 |
-
self.use_ema = use_ema
|
586 |
-
|
587 |
-
if self.use_ema:
|
588 |
-
self.diffusion_ema = EMA(
|
589 |
-
self.diffusion.model,
|
590 |
-
beta=0.9999,
|
591 |
-
power=3/4,
|
592 |
-
update_every=1,
|
593 |
-
update_after_step=1,
|
594 |
-
include_online_model=False
|
595 |
-
)
|
596 |
-
else:
|
597 |
-
self.diffusion_ema = None
|
598 |
-
|
599 |
-
self.cfg_dropout_prob = cfg_dropout_prob
|
600 |
-
|
601 |
-
self.lr = lr
|
602 |
-
self.max_mask_segments = max_mask_segments
|
603 |
-
|
604 |
-
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
605 |
-
|
606 |
-
self.timestep_sampler = timestep_sampler
|
607 |
-
|
608 |
-
self.diffusion_objective = model.diffusion_objective
|
609 |
-
|
610 |
-
self.loss_modules = [
|
611 |
-
MSELoss("output",
|
612 |
-
"targets",
|
613 |
-
weight=1.0,
|
614 |
-
name="mse_loss"
|
615 |
-
)
|
616 |
-
]
|
617 |
-
|
618 |
-
self.losses = MultiLoss(self.loss_modules)
|
619 |
-
|
620 |
-
self.log_loss_info = log_loss_info
|
621 |
-
|
622 |
-
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"
|
623 |
-
|
624 |
-
if optimizer_configs is None:
|
625 |
-
optimizer_configs = {
|
626 |
-
"diffusion": {
|
627 |
-
"optimizer": {
|
628 |
-
"type": "Adam",
|
629 |
-
"config": {
|
630 |
-
"lr": lr
|
631 |
-
}
|
632 |
-
}
|
633 |
-
}
|
634 |
-
}
|
635 |
-
else:
|
636 |
-
if lr is not None:
|
637 |
-
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
|
638 |
-
|
639 |
-
self.optimizer_configs = optimizer_configs
|
640 |
-
|
641 |
-
self.pre_encoded = pre_encoded
|
642 |
-
|
643 |
-
def configure_optimizers(self):
|
644 |
-
diffusion_opt_config = self.optimizer_configs['diffusion']
|
645 |
-
opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters())
|
646 |
-
|
647 |
-
if "scheduler" in diffusion_opt_config:
|
648 |
-
sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff)
|
649 |
-
sched_diff_config = {
|
650 |
-
"scheduler": sched_diff,
|
651 |
-
"interval": "step"
|
652 |
-
}
|
653 |
-
return [opt_diff], [sched_diff_config]
|
654 |
-
|
655 |
-
return [opt_diff]
|
656 |
-
|
657 |
-
def random_mask(self, sequence, max_mask_length):
|
658 |
-
b, _, sequence_length = sequence.size()
|
659 |
-
|
660 |
-
# Create a mask tensor for each batch element
|
661 |
-
masks = []
|
662 |
-
|
663 |
-
for i in range(b):
|
664 |
-
mask_type = random.randint(0, 2)
|
665 |
-
|
666 |
-
if mask_type == 0: # Random mask with multiple segments
|
667 |
-
num_segments = random.randint(1, self.max_mask_segments)
|
668 |
-
max_segment_length = max_mask_length // num_segments
|
669 |
-
|
670 |
-
segment_lengths = random.sample(range(1, max_segment_length + 1), num_segments)
|
671 |
-
|
672 |
-
mask = torch.ones((1, 1, sequence_length))
|
673 |
-
for length in segment_lengths:
|
674 |
-
mask_start = random.randint(0, sequence_length - length)
|
675 |
-
mask[:, :, mask_start:mask_start + length] = 0
|
676 |
-
|
677 |
-
elif mask_type == 1: # Full mask
|
678 |
-
mask = torch.zeros((1, 1, sequence_length))
|
679 |
-
|
680 |
-
elif mask_type == 2: # Causal mask
|
681 |
-
mask = torch.ones((1, 1, sequence_length))
|
682 |
-
mask_length = random.randint(1, max_mask_length)
|
683 |
-
mask[:, :, -mask_length:] = 0
|
684 |
-
|
685 |
-
mask = mask.to(sequence.device)
|
686 |
-
masks.append(mask)
|
687 |
-
|
688 |
-
# Concatenate the mask tensors into a single tensor
|
689 |
-
mask = torch.cat(masks, dim=0).to(sequence.device)
|
690 |
-
|
691 |
-
# Apply the mask to the sequence tensor for each batch element
|
692 |
-
masked_sequence = sequence * mask
|
693 |
-
|
694 |
-
return masked_sequence, mask
|
695 |
-
|
696 |
-
def training_step(self, batch, batch_idx):
|
697 |
-
reals, metadata = batch
|
698 |
-
|
699 |
-
p = Profiler()
|
700 |
-
|
701 |
-
if reals.ndim == 4 and reals.shape[0] == 1:
|
702 |
-
reals = reals[0]
|
703 |
-
|
704 |
-
loss_info = {}
|
705 |
-
|
706 |
-
diffusion_input = reals
|
707 |
-
|
708 |
-
if not self.pre_encoded:
|
709 |
-
loss_info["audio_reals"] = diffusion_input
|
710 |
-
|
711 |
-
p.tick("setup")
|
712 |
-
|
713 |
-
with torch.cuda.amp.autocast():
|
714 |
-
conditioning = self.diffusion.conditioner(metadata, self.device)
|
715 |
-
|
716 |
-
p.tick("conditioning")
|
717 |
-
|
718 |
-
if self.diffusion.pretransform is not None:
|
719 |
-
self.diffusion.pretransform.to(self.device)
|
720 |
-
|
721 |
-
if not self.pre_encoded:
|
722 |
-
with torch.cuda.amp.autocast() and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
|
723 |
-
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
|
724 |
-
p.tick("pretransform")
|
725 |
-
|
726 |
-
# If mask_padding is on, interpolate the padding masks to the size of the pretransformed input
|
727 |
-
# if use_padding_mask:
|
728 |
-
# padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=diffusion_input.shape[2], mode="nearest").squeeze(1).bool()
|
729 |
-
else:
|
730 |
-
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
|
731 |
-
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
|
732 |
-
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
|
733 |
-
|
734 |
-
# Max mask size is the full sequence length
|
735 |
-
max_mask_length = diffusion_input.shape[2]
|
736 |
-
|
737 |
-
# Create a mask of random length for a random slice of the input
|
738 |
-
masked_input, mask = self.random_mask(diffusion_input, max_mask_length)
|
739 |
-
|
740 |
-
conditioning['inpaint_mask'] = [mask]
|
741 |
-
conditioning['inpaint_masked_input'] = [masked_input]
|
742 |
-
|
743 |
-
if self.timestep_sampler == "uniform":
|
744 |
-
# Draw uniformly distributed continuous timesteps
|
745 |
-
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
746 |
-
elif self.timestep_sampler == "logit_normal":
|
747 |
-
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
|
748 |
-
|
749 |
-
# Calculate the noise schedule parameters for those timesteps
|
750 |
-
if self.diffusion_objective == "v":
|
751 |
-
alphas, sigmas = get_alphas_sigmas(t)
|
752 |
-
elif self.diffusion_objective == "rectified_flow":
|
753 |
-
alphas, sigmas = 1-t, t
|
754 |
-
|
755 |
-
# Combine the ground truth data and the noise
|
756 |
-
alphas = alphas[:, None, None]
|
757 |
-
sigmas = sigmas[:, None, None]
|
758 |
-
noise = torch.randn_like(diffusion_input)
|
759 |
-
noised_inputs = diffusion_input * alphas + noise * sigmas
|
760 |
-
|
761 |
-
if self.diffusion_objective == "v":
|
762 |
-
targets = noise * alphas - diffusion_input * sigmas
|
763 |
-
elif self.diffusion_objective == "rectified_flow":
|
764 |
-
targets = noise - diffusion_input
|
765 |
-
|
766 |
-
p.tick("noise")
|
767 |
-
|
768 |
-
extra_args = {}
|
769 |
-
|
770 |
-
with torch.cuda.amp.autocast():
|
771 |
-
p.tick("amp")
|
772 |
-
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args)
|
773 |
-
p.tick("diffusion")
|
774 |
-
|
775 |
-
loss_info.update({
|
776 |
-
"output": output,
|
777 |
-
"targets": targets,
|
778 |
-
})
|
779 |
-
|
780 |
-
loss, losses = self.losses(loss_info)
|
781 |
-
|
782 |
-
if self.log_loss_info:
|
783 |
-
# Loss debugging logs
|
784 |
-
num_loss_buckets = 10
|
785 |
-
bucket_size = 1 / num_loss_buckets
|
786 |
-
loss_all = F.mse_loss(output, targets, reduction="none")
|
787 |
-
|
788 |
-
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze()
|
789 |
-
|
790 |
-
# gather loss_all across all GPUs
|
791 |
-
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n")
|
792 |
-
|
793 |
-
# Bucket loss values based on corresponding sigma values, bucketing sigma values by bucket_size
|
794 |
-
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)])
|
795 |
-
|
796 |
-
# Log bucketed losses with corresponding sigma bucket values, if it's not NaN
|
797 |
-
debug_log_dict = {
|
798 |
-
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i])
|
799 |
-
}
|
800 |
-
|
801 |
-
self.log_dict(debug_log_dict)
|
802 |
-
|
803 |
-
log_dict = {
|
804 |
-
'train/loss': loss.detach(),
|
805 |
-
'train/std_data': diffusion_input.std(),
|
806 |
-
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
|
807 |
-
}
|
808 |
-
|
809 |
-
for loss_name, loss_value in losses.items():
|
810 |
-
log_dict[f"train/{loss_name}"] = loss_value.detach()
|
811 |
-
|
812 |
-
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
813 |
-
p.tick("log")
|
814 |
-
#print(f"Profiler: {p}")
|
815 |
-
return loss
|
816 |
-
|
817 |
-
def on_before_zero_grad(self, *args, **kwargs):
|
818 |
-
if self.diffusion_ema is not None:
|
819 |
-
self.diffusion_ema.update()
|
820 |
-
|
821 |
-
def export_model(self, path, use_safetensors=False):
|
822 |
-
if self.diffusion_ema is not None:
|
823 |
-
self.diffusion.model = self.diffusion_ema.ema_model
|
824 |
-
|
825 |
-
if use_safetensors:
|
826 |
-
save_file(self.diffusion.state_dict(), path)
|
827 |
-
else:
|
828 |
-
torch.save({"state_dict": self.diffusion.state_dict()}, path)
|
829 |
-
|
830 |
-
class DiffusionCondInpaintDemoCallback(pl.Callback):
|
831 |
-
def __init__(
|
832 |
-
self,
|
833 |
-
demo_dl,
|
834 |
-
demo_every=2000,
|
835 |
-
demo_steps=250,
|
836 |
-
sample_size=65536,
|
837 |
-
sample_rate=48000,
|
838 |
-
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7]
|
839 |
-
):
|
840 |
-
super().__init__()
|
841 |
-
self.demo_every = demo_every
|
842 |
-
self.demo_steps = demo_steps
|
843 |
-
self.demo_samples = sample_size
|
844 |
-
self.demo_dl = iter(demo_dl)
|
845 |
-
self.sample_rate = sample_rate
|
846 |
-
self.demo_cfg_scales = demo_cfg_scales
|
847 |
-
self.last_demo_step = -1
|
848 |
-
|
849 |
-
@rank_zero_only
|
850 |
-
@torch.no_grad()
|
851 |
-
def on_train_batch_end(self, trainer, module: DiffusionCondTrainingWrapper, outputs, batch, batch_idx):
|
852 |
-
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
853 |
-
return
|
854 |
-
|
855 |
-
self.last_demo_step = trainer.global_step
|
856 |
-
|
857 |
-
try:
|
858 |
-
log_dict = {}
|
859 |
-
|
860 |
-
demo_reals, metadata = next(self.demo_dl)
|
861 |
-
|
862 |
-
# Remove extra dimension added by WebDataset
|
863 |
-
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
|
864 |
-
demo_reals = demo_reals[0]
|
865 |
-
|
866 |
-
demo_reals = demo_reals.to(module.device)
|
867 |
-
|
868 |
-
if not module.pre_encoded:
|
869 |
-
# Log the real audio
|
870 |
-
log_dict[f'demo_reals_melspec_left'] = wandb.Image(audio_spectrogram_image(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu()))
|
871 |
-
# log_dict[f'demo_reals'] = wandb.Audio(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu(), sample_rate=self.sample_rate, caption="demo reals")
|
872 |
-
|
873 |
-
if module.diffusion.pretransform is not None:
|
874 |
-
module.diffusion.pretransform.to(module.device)
|
875 |
-
with torch.cuda.amp.autocast():
|
876 |
-
demo_reals = module.diffusion.pretransform.encode(demo_reals)
|
877 |
-
|
878 |
-
demo_samples = demo_reals.shape[2]
|
879 |
-
|
880 |
-
# Get conditioning
|
881 |
-
conditioning = module.diffusion.conditioner(metadata, module.device)
|
882 |
-
|
883 |
-
masked_input, mask = module.random_mask(demo_reals, demo_reals.shape[2])
|
884 |
-
|
885 |
-
conditioning['inpaint_mask'] = [mask]
|
886 |
-
conditioning['inpaint_masked_input'] = [masked_input]
|
887 |
-
|
888 |
-
if module.diffusion.pretransform is not None:
|
889 |
-
log_dict[f'demo_masked_input'] = wandb.Image(tokens_spectrogram_image(masked_input.cpu()))
|
890 |
-
else:
|
891 |
-
log_dict[f'demo_masked_input'] = wandb.Image(audio_spectrogram_image(rearrange(masked_input, "b c t -> c (b t)").mul(32767).to(torch.int16).cpu()))
|
892 |
-
|
893 |
-
cond_inputs = module.diffusion.get_conditioning_inputs(conditioning)
|
894 |
-
|
895 |
-
noise = torch.randn([demo_reals.shape[0], module.diffusion.io_channels, demo_samples]).to(module.device)
|
896 |
-
|
897 |
-
trainer.logger.experiment.log(log_dict)
|
898 |
-
|
899 |
-
for cfg_scale in self.demo_cfg_scales:
|
900 |
-
model = module.diffusion_ema.model if module.diffusion_ema is not None else module.diffusion.model
|
901 |
-
print(f"Generating demo for cfg scale {cfg_scale}")
|
902 |
-
|
903 |
-
if module.diffusion_objective == "v":
|
904 |
-
fakes = sample(model, noise, self.demo_steps, 0, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
|
905 |
-
elif module.diffusion_objective == "rectified_flow":
|
906 |
-
fakes = sample_discrete_euler(model, noise, self.demo_steps, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
|
907 |
-
|
908 |
-
if module.diffusion.pretransform is not None:
|
909 |
-
with torch.cuda.amp.autocast():
|
910 |
-
fakes = module.diffusion.pretransform.decode(fakes)
|
911 |
-
|
912 |
-
# Put the demos together
|
913 |
-
fakes = rearrange(fakes, 'b d n -> d (b n)')
|
914 |
-
|
915 |
-
log_dict = {}
|
916 |
-
|
917 |
-
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
|
918 |
-
fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
|
919 |
-
torchaudio.save(filename, fakes, self.sample_rate)
|
920 |
-
|
921 |
-
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
|
922 |
-
sample_rate=self.sample_rate,
|
923 |
-
caption=f'Reconstructed')
|
924 |
-
|
925 |
-
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
|
926 |
-
|
927 |
-
trainer.logger.experiment.log(log_dict)
|
928 |
-
except Exception as e:
|
929 |
-
print(f'{type(e).__name__}: {e}')
|
930 |
-
raise e
|
931 |
-
|
932 |
-
class DiffusionAutoencoderTrainingWrapper(pl.LightningModule):
|
933 |
-
'''
|
934 |
-
Wrapper for training a diffusion autoencoder
|
935 |
-
'''
|
936 |
-
def __init__(
|
937 |
-
self,
|
938 |
-
model: DiffusionAutoencoder,
|
939 |
-
lr: float = 1e-4,
|
940 |
-
ema_copy = None,
|
941 |
-
use_reconstruction_loss: bool = False
|
942 |
-
):
|
943 |
-
super().__init__()
|
944 |
-
|
945 |
-
self.diffae = model
|
946 |
-
|
947 |
-
self.diffae_ema = EMA(
|
948 |
-
self.diffae,
|
949 |
-
ema_model=ema_copy,
|
950 |
-
beta=0.9999,
|
951 |
-
power=3/4,
|
952 |
-
update_every=1,
|
953 |
-
update_after_step=1,
|
954 |
-
include_online_model=False
|
955 |
-
)
|
956 |
-
|
957 |
-
self.lr = lr
|
958 |
-
|
959 |
-
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
960 |
-
|
961 |
-
loss_modules = [
|
962 |
-
MSELoss("v",
|
963 |
-
"targets",
|
964 |
-
weight=1.0,
|
965 |
-
name="mse_loss"
|
966 |
-
)
|
967 |
-
]
|
968 |
-
|
969 |
-
if model.bottleneck is not None:
|
970 |
-
# TODO: Use loss config for configurable bottleneck weights and reconstruction losses
|
971 |
-
loss_modules += create_loss_modules_from_bottleneck(model.bottleneck, {})
|
972 |
-
|
973 |
-
self.use_reconstruction_loss = use_reconstruction_loss
|
974 |
-
|
975 |
-
if use_reconstruction_loss:
|
976 |
-
scales = [2048, 1024, 512, 256, 128, 64, 32]
|
977 |
-
hop_sizes = []
|
978 |
-
win_lengths = []
|
979 |
-
overlap = 0.75
|
980 |
-
for s in scales:
|
981 |
-
hop_sizes.append(int(s * (1 - overlap)))
|
982 |
-
win_lengths.append(s)
|
983 |
-
|
984 |
-
sample_rate = model.sample_rate
|
985 |
-
|
986 |
-
stft_loss_args = {
|
987 |
-
"fft_sizes": scales,
|
988 |
-
"hop_sizes": hop_sizes,
|
989 |
-
"win_lengths": win_lengths,
|
990 |
-
"perceptual_weighting": True
|
991 |
-
}
|
992 |
-
|
993 |
-
out_channels = model.out_channels
|
994 |
-
|
995 |
-
if model.pretransform is not None:
|
996 |
-
out_channels = model.pretransform.io_channels
|
997 |
-
|
998 |
-
if out_channels == 2:
|
999 |
-
self.sdstft = auraloss.freq.SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
1000 |
-
else:
|
1001 |
-
self.sdstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
1002 |
-
|
1003 |
-
loss_modules.append(
|
1004 |
-
AuralossLoss(self.sdstft, 'audio_reals', 'audio_pred', name='mrstft_loss', weight=0.1), # Reconstruction loss
|
1005 |
-
)
|
1006 |
-
|
1007 |
-
self.losses = MultiLoss(loss_modules)
|
1008 |
-
|
1009 |
-
def configure_optimizers(self):
|
1010 |
-
return optim.Adam([*self.diffae.parameters()], lr=self.lr)
|
1011 |
-
|
1012 |
-
def training_step(self, batch, batch_idx):
|
1013 |
-
reals = batch[0]
|
1014 |
-
|
1015 |
-
if reals.ndim == 4 and reals.shape[0] == 1:
|
1016 |
-
reals = reals[0]
|
1017 |
-
|
1018 |
-
loss_info = {}
|
1019 |
-
|
1020 |
-
loss_info["audio_reals"] = reals
|
1021 |
-
|
1022 |
-
if self.diffae.pretransform is not None:
|
1023 |
-
with torch.no_grad():
|
1024 |
-
reals = self.diffae.pretransform.encode(reals)
|
1025 |
-
|
1026 |
-
loss_info["reals"] = reals
|
1027 |
-
|
1028 |
-
#Encode reals, skipping the pretransform since it was already applied
|
1029 |
-
latents, encoder_info = self.diffae.encode(reals, return_info=True, skip_pretransform=True)
|
1030 |
-
|
1031 |
-
loss_info["latents"] = latents
|
1032 |
-
loss_info.update(encoder_info)
|
1033 |
-
|
1034 |
-
if self.diffae.decoder is not None:
|
1035 |
-
latents = self.diffae.decoder(latents)
|
1036 |
-
|
1037 |
-
# Upsample latents to match diffusion length
|
1038 |
-
if latents.shape[2] != reals.shape[2]:
|
1039 |
-
latents = F.interpolate(latents, size=reals.shape[2], mode='nearest')
|
1040 |
-
|
1041 |
-
loss_info["latents_upsampled"] = latents
|
1042 |
-
|
1043 |
-
# Draw uniformly distributed continuous timesteps
|
1044 |
-
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
1045 |
-
|
1046 |
-
# Calculate the noise schedule parameters for those timesteps
|
1047 |
-
alphas, sigmas = get_alphas_sigmas(t)
|
1048 |
-
|
1049 |
-
# Combine the ground truth data and the noise
|
1050 |
-
alphas = alphas[:, None, None]
|
1051 |
-
sigmas = sigmas[:, None, None]
|
1052 |
-
noise = torch.randn_like(reals)
|
1053 |
-
noised_reals = reals * alphas + noise * sigmas
|
1054 |
-
targets = noise * alphas - reals * sigmas
|
1055 |
-
|
1056 |
-
with torch.cuda.amp.autocast():
|
1057 |
-
v = self.diffae.diffusion(noised_reals, t, input_concat_cond=latents)
|
1058 |
-
|
1059 |
-
loss_info.update({
|
1060 |
-
"v": v,
|
1061 |
-
"targets": targets
|
1062 |
-
})
|
1063 |
-
|
1064 |
-
if self.use_reconstruction_loss:
|
1065 |
-
pred = noised_reals * alphas - v * sigmas
|
1066 |
-
|
1067 |
-
loss_info["pred"] = pred
|
1068 |
-
|
1069 |
-
if self.diffae.pretransform is not None:
|
1070 |
-
pred = self.diffae.pretransform.decode(pred)
|
1071 |
-
loss_info["audio_pred"] = pred
|
1072 |
-
|
1073 |
-
loss, losses = self.losses(loss_info)
|
1074 |
-
|
1075 |
-
log_dict = {
|
1076 |
-
'train/loss': loss.detach(),
|
1077 |
-
'train/std_data': reals.std(),
|
1078 |
-
'train/latent_std': latents.std(),
|
1079 |
-
}
|
1080 |
-
|
1081 |
-
for loss_name, loss_value in losses.items():
|
1082 |
-
log_dict[f"train/{loss_name}"] = loss_value.detach()
|
1083 |
-
|
1084 |
-
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
1085 |
-
return loss
|
1086 |
-
|
1087 |
-
def on_before_zero_grad(self, *args, **kwargs):
|
1088 |
-
self.diffae_ema.update()
|
1089 |
-
|
1090 |
-
def export_model(self, path, use_safetensors=False):
|
1091 |
-
|
1092 |
-
model = self.diffae_ema.ema_model
|
1093 |
-
|
1094 |
-
if use_safetensors:
|
1095 |
-
save_file(model.state_dict(), path)
|
1096 |
-
else:
|
1097 |
-
torch.save({"state_dict": model.state_dict()}, path)
|
1098 |
-
|
1099 |
-
class DiffusionAutoencoderDemoCallback(pl.Callback):
|
1100 |
-
def __init__(
|
1101 |
-
self,
|
1102 |
-
demo_dl,
|
1103 |
-
demo_every=2000,
|
1104 |
-
demo_steps=250,
|
1105 |
-
sample_size=65536,
|
1106 |
-
sample_rate=48000
|
1107 |
-
):
|
1108 |
-
super().__init__()
|
1109 |
-
self.demo_every = demo_every
|
1110 |
-
self.demo_steps = demo_steps
|
1111 |
-
self.demo_samples = sample_size
|
1112 |
-
self.demo_dl = iter(demo_dl)
|
1113 |
-
self.sample_rate = sample_rate
|
1114 |
-
self.last_demo_step = -1
|
1115 |
-
|
1116 |
-
@rank_zero_only
|
1117 |
-
@torch.no_grad()
|
1118 |
-
def on_train_batch_end(self, trainer, module: DiffusionAutoencoderTrainingWrapper, outputs, batch, batch_idx):
|
1119 |
-
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
1120 |
-
return
|
1121 |
-
|
1122 |
-
self.last_demo_step = trainer.global_step
|
1123 |
-
|
1124 |
-
demo_reals, _ = next(self.demo_dl)
|
1125 |
-
|
1126 |
-
# Remove extra dimension added by WebDataset
|
1127 |
-
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
|
1128 |
-
demo_reals = demo_reals[0]
|
1129 |
-
|
1130 |
-
encoder_input = demo_reals
|
1131 |
-
|
1132 |
-
encoder_input = encoder_input.to(module.device)
|
1133 |
-
|
1134 |
-
demo_reals = demo_reals.to(module.device)
|
1135 |
-
|
1136 |
-
with torch.no_grad() and torch.cuda.amp.autocast():
|
1137 |
-
latents = module.diffae_ema.ema_model.encode(encoder_input).float()
|
1138 |
-
fakes = module.diffae_ema.ema_model.decode(latents, steps=self.demo_steps)
|
1139 |
-
|
1140 |
-
#Interleave reals and fakes
|
1141 |
-
reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n')
|
1142 |
-
|
1143 |
-
# Put the demos together
|
1144 |
-
reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)')
|
1145 |
-
|
1146 |
-
log_dict = {}
|
1147 |
-
|
1148 |
-
filename = f'recon_{trainer.global_step:08}.wav'
|
1149 |
-
reals_fakes = reals_fakes.to(torch.float32).div(torch.max(torch.abs(reals_fakes))).mul(32767).to(torch.int16).cpu()
|
1150 |
-
torchaudio.save(filename, reals_fakes, self.sample_rate)
|
1151 |
-
|
1152 |
-
log_dict[f'recon'] = wandb.Audio(filename,
|
1153 |
-
sample_rate=self.sample_rate,
|
1154 |
-
caption=f'Reconstructed')
|
1155 |
-
|
1156 |
-
log_dict[f'embeddings_3dpca'] = pca_point_cloud(latents)
|
1157 |
-
log_dict[f'embeddings_spec'] = wandb.Image(tokens_spectrogram_image(latents))
|
1158 |
-
|
1159 |
-
log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes))
|
1160 |
-
|
1161 |
-
if module.diffae_ema.ema_model.pretransform is not None:
|
1162 |
-
with torch.no_grad() and torch.cuda.amp.autocast():
|
1163 |
-
initial_latents = module.diffae_ema.ema_model.pretransform.encode(encoder_input)
|
1164 |
-
first_stage_fakes = module.diffae_ema.ema_model.pretransform.decode(initial_latents)
|
1165 |
-
first_stage_fakes = rearrange(first_stage_fakes, 'b d n -> d (b n)')
|
1166 |
-
first_stage_fakes = first_stage_fakes.to(torch.float32).mul(32767).to(torch.int16).cpu()
|
1167 |
-
first_stage_filename = f'first_stage_{trainer.global_step:08}.wav'
|
1168 |
-
torchaudio.save(first_stage_filename, first_stage_fakes, self.sample_rate)
|
1169 |
-
|
1170 |
-
log_dict[f'first_stage_latents'] = wandb.Image(tokens_spectrogram_image(initial_latents))
|
1171 |
-
|
1172 |
-
log_dict[f'first_stage'] = wandb.Audio(first_stage_filename,
|
1173 |
-
sample_rate=self.sample_rate,
|
1174 |
-
caption=f'First Stage Reconstructed')
|
1175 |
-
|
1176 |
-
log_dict[f'first_stage_melspec_left'] = wandb.Image(audio_spectrogram_image(first_stage_fakes))
|
1177 |
-
|
1178 |
-
|
1179 |
-
trainer.logger.experiment.log(log_dict)
|
1180 |
-
|
1181 |
-
def create_source_mixture(reals, num_sources=2):
|
1182 |
-
# Create a fake mixture source by mixing elements from the training batch together with random offsets
|
1183 |
-
source = torch.zeros_like(reals)
|
1184 |
-
for i in range(reals.shape[0]):
|
1185 |
-
sources_added = 0
|
1186 |
-
|
1187 |
-
js = list(range(reals.shape[0]))
|
1188 |
-
random.shuffle(js)
|
1189 |
-
for j in js:
|
1190 |
-
if i == j or (i != j and sources_added < num_sources):
|
1191 |
-
# Randomly offset the mixed element between 0 and the length of the source
|
1192 |
-
seq_len = reals.shape[2]
|
1193 |
-
offset = random.randint(0, seq_len-1)
|
1194 |
-
source[i, :, offset:] += reals[j, :, :-offset]
|
1195 |
-
if i == j:
|
1196 |
-
# If this is the real one, shift the reals as well to ensure alignment
|
1197 |
-
new_reals = torch.zeros_like(reals[i])
|
1198 |
-
new_reals[:, offset:] = reals[i, :, :-offset]
|
1199 |
-
reals[i] = new_reals
|
1200 |
-
sources_added += 1
|
1201 |
-
|
1202 |
-
return source
|
1203 |
-
|
1204 |
-
class DiffusionPriorTrainingWrapper(pl.LightningModule):
|
1205 |
-
'''
|
1206 |
-
Wrapper for training a diffusion prior for inverse problems
|
1207 |
-
Prior types:
|
1208 |
-
mono_stereo: The prior is conditioned on a mono version of the audio to generate a stereo version
|
1209 |
-
'''
|
1210 |
-
def __init__(
|
1211 |
-
self,
|
1212 |
-
model: ConditionedDiffusionModelWrapper,
|
1213 |
-
lr: float = 1e-4,
|
1214 |
-
ema_copy = None,
|
1215 |
-
prior_type: PriorType = PriorType.MonoToStereo,
|
1216 |
-
use_reconstruction_loss: bool = False,
|
1217 |
-
log_loss_info: bool = False,
|
1218 |
-
):
|
1219 |
-
super().__init__()
|
1220 |
-
|
1221 |
-
self.diffusion = model
|
1222 |
-
|
1223 |
-
self.diffusion_ema = EMA(
|
1224 |
-
self.diffusion,
|
1225 |
-
ema_model=ema_copy,
|
1226 |
-
beta=0.9999,
|
1227 |
-
power=3/4,
|
1228 |
-
update_every=1,
|
1229 |
-
update_after_step=1,
|
1230 |
-
include_online_model=False
|
1231 |
-
)
|
1232 |
-
|
1233 |
-
self.lr = lr
|
1234 |
-
|
1235 |
-
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
1236 |
-
|
1237 |
-
self.log_loss_info = log_loss_info
|
1238 |
-
|
1239 |
-
loss_modules = [
|
1240 |
-
MSELoss("v",
|
1241 |
-
"targets",
|
1242 |
-
weight=1.0,
|
1243 |
-
name="mse_loss"
|
1244 |
-
)
|
1245 |
-
]
|
1246 |
-
|
1247 |
-
self.use_reconstruction_loss = use_reconstruction_loss
|
1248 |
-
|
1249 |
-
if use_reconstruction_loss:
|
1250 |
-
scales = [2048, 1024, 512, 256, 128, 64, 32]
|
1251 |
-
hop_sizes = []
|
1252 |
-
win_lengths = []
|
1253 |
-
overlap = 0.75
|
1254 |
-
for s in scales:
|
1255 |
-
hop_sizes.append(int(s * (1 - overlap)))
|
1256 |
-
win_lengths.append(s)
|
1257 |
-
|
1258 |
-
sample_rate = model.sample_rate
|
1259 |
-
|
1260 |
-
stft_loss_args = {
|
1261 |
-
"fft_sizes": scales,
|
1262 |
-
"hop_sizes": hop_sizes,
|
1263 |
-
"win_lengths": win_lengths,
|
1264 |
-
"perceptual_weighting": True
|
1265 |
-
}
|
1266 |
-
|
1267 |
-
out_channels = model.io_channels
|
1268 |
-
|
1269 |
-
self.audio_out_channels = out_channels
|
1270 |
-
|
1271 |
-
if model.pretransform is not None:
|
1272 |
-
out_channels = model.pretransform.io_channels
|
1273 |
-
|
1274 |
-
if self.audio_out_channels == 2:
|
1275 |
-
self.sdstft = auraloss.freq.SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
1276 |
-
self.lrstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
1277 |
-
|
1278 |
-
# Add left and right channel reconstruction losses in addition to the sum and difference
|
1279 |
-
self.loss_modules += [
|
1280 |
-
AuralossLoss(self.lrstft, 'audio_reals_left', 'pred_left', name='stft_loss_left', weight=0.05),
|
1281 |
-
AuralossLoss(self.lrstft, 'audio_reals_right', 'pred_right', name='stft_loss_right', weight=0.05),
|
1282 |
-
]
|
1283 |
-
|
1284 |
-
else:
|
1285 |
-
self.sdstft = auraloss.freq.MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
1286 |
-
|
1287 |
-
self.loss_modules.append(
|
1288 |
-
AuralossLoss(self.sdstft, 'audio_reals', 'audio_pred', name='mrstft_loss', weight=0.1), # Reconstruction loss
|
1289 |
-
)
|
1290 |
-
|
1291 |
-
self.losses = MultiLoss(loss_modules)
|
1292 |
-
|
1293 |
-
self.prior_type = prior_type
|
1294 |
-
|
1295 |
-
def configure_optimizers(self):
|
1296 |
-
return optim.Adam([*self.diffusion.parameters()], lr=self.lr)
|
1297 |
-
|
1298 |
-
def training_step(self, batch, batch_idx):
|
1299 |
-
reals, metadata = batch
|
1300 |
-
|
1301 |
-
if reals.ndim == 4 and reals.shape[0] == 1:
|
1302 |
-
reals = reals[0]
|
1303 |
-
|
1304 |
-
loss_info = {}
|
1305 |
-
|
1306 |
-
loss_info["audio_reals"] = reals
|
1307 |
-
|
1308 |
-
if self.prior_type == PriorType.MonoToStereo:
|
1309 |
-
source = reals.mean(dim=1, keepdim=True).repeat(1, reals.shape[1], 1).to(self.device)
|
1310 |
-
loss_info["audio_reals_mono"] = source
|
1311 |
-
else:
|
1312 |
-
raise ValueError(f"Unknown prior type {self.prior_type}")
|
1313 |
-
|
1314 |
-
if self.diffusion.pretransform is not None:
|
1315 |
-
with torch.no_grad():
|
1316 |
-
reals = self.diffusion.pretransform.encode(reals)
|
1317 |
-
|
1318 |
-
if self.prior_type in [PriorType.MonoToStereo]:
|
1319 |
-
source = self.diffusion.pretransform.encode(source)
|
1320 |
-
|
1321 |
-
if self.diffusion.conditioner is not None:
|
1322 |
-
with torch.cuda.amp.autocast():
|
1323 |
-
conditioning = self.diffusion.conditioner(metadata, self.device)
|
1324 |
-
else:
|
1325 |
-
conditioning = {}
|
1326 |
-
|
1327 |
-
loss_info["reals"] = reals
|
1328 |
-
|
1329 |
-
# Draw uniformly distributed continuous timesteps
|
1330 |
-
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
1331 |
-
|
1332 |
-
# Calculate the noise schedule parameters for those timesteps
|
1333 |
-
alphas, sigmas = get_alphas_sigmas(t)
|
1334 |
-
|
1335 |
-
# Combine the ground truth data and the noise
|
1336 |
-
alphas = alphas[:, None, None]
|
1337 |
-
sigmas = sigmas[:, None, None]
|
1338 |
-
noise = torch.randn_like(reals)
|
1339 |
-
noised_reals = reals * alphas + noise * sigmas
|
1340 |
-
targets = noise * alphas - reals * sigmas
|
1341 |
-
|
1342 |
-
with torch.cuda.amp.autocast():
|
1343 |
-
|
1344 |
-
conditioning['source'] = [source]
|
1345 |
-
|
1346 |
-
v = self.diffusion(noised_reals, t, cond=conditioning, cfg_dropout_prob = 0.1)
|
1347 |
-
|
1348 |
-
loss_info.update({
|
1349 |
-
"v": v,
|
1350 |
-
"targets": targets
|
1351 |
-
})
|
1352 |
-
|
1353 |
-
if self.use_reconstruction_loss:
|
1354 |
-
pred = noised_reals * alphas - v * sigmas
|
1355 |
-
|
1356 |
-
loss_info["pred"] = pred
|
1357 |
-
|
1358 |
-
if self.diffusion.pretransform is not None:
|
1359 |
-
pred = self.diffusion.pretransform.decode(pred)
|
1360 |
-
loss_info["audio_pred"] = pred
|
1361 |
-
|
1362 |
-
if self.audio_out_channels == 2:
|
1363 |
-
loss_info["pred_left"] = pred[:, 0:1, :]
|
1364 |
-
loss_info["pred_right"] = pred[:, 1:2, :]
|
1365 |
-
loss_info["audio_reals_left"] = loss_info["audio_reals"][:, 0:1, :]
|
1366 |
-
loss_info["audio_reals_right"] = loss_info["audio_reals"][:, 1:2, :]
|
1367 |
-
|
1368 |
-
loss, losses = self.losses(loss_info)
|
1369 |
-
|
1370 |
-
if self.log_loss_info:
|
1371 |
-
# Loss debugging logs
|
1372 |
-
num_loss_buckets = 10
|
1373 |
-
bucket_size = 1 / num_loss_buckets
|
1374 |
-
loss_all = F.mse_loss(v, targets, reduction="none")
|
1375 |
-
|
1376 |
-
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze()
|
1377 |
-
|
1378 |
-
# gather loss_all across all GPUs
|
1379 |
-
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n")
|
1380 |
-
|
1381 |
-
# Bucket loss values based on corresponding sigma values, bucketing sigma values by bucket_size
|
1382 |
-
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)])
|
1383 |
-
|
1384 |
-
# Log bucketed losses with corresponding sigma bucket values, if it's not NaN
|
1385 |
-
debug_log_dict = {
|
1386 |
-
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i])
|
1387 |
-
}
|
1388 |
-
|
1389 |
-
self.log_dict(debug_log_dict)
|
1390 |
-
|
1391 |
-
log_dict = {
|
1392 |
-
'train/loss': loss.detach(),
|
1393 |
-
'train/std_data': reals.std()
|
1394 |
-
}
|
1395 |
-
|
1396 |
-
for loss_name, loss_value in losses.items():
|
1397 |
-
log_dict[f"train/{loss_name}"] = loss_value.detach()
|
1398 |
-
|
1399 |
-
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
1400 |
-
return loss
|
1401 |
-
|
1402 |
-
def on_before_zero_grad(self, *args, **kwargs):
|
1403 |
-
self.diffusion_ema.update()
|
1404 |
-
|
1405 |
-
def export_model(self, path, use_safetensors=False):
|
1406 |
-
|
1407 |
-
#model = self.diffusion_ema.ema_model
|
1408 |
-
model = self.diffusion
|
1409 |
-
|
1410 |
-
if use_safetensors:
|
1411 |
-
save_file(model.state_dict(), path)
|
1412 |
-
else:
|
1413 |
-
torch.save({"state_dict": model.state_dict()}, path)
|
1414 |
-
|
1415 |
-
class DiffusionPriorDemoCallback(pl.Callback):
|
1416 |
-
def __init__(
|
1417 |
-
self,
|
1418 |
-
demo_dl,
|
1419 |
-
demo_every=2000,
|
1420 |
-
demo_steps=250,
|
1421 |
-
sample_size=65536,
|
1422 |
-
sample_rate=48000
|
1423 |
-
):
|
1424 |
-
super().__init__()
|
1425 |
-
self.demo_every = demo_every
|
1426 |
-
self.demo_steps = demo_steps
|
1427 |
-
self.demo_samples = sample_size
|
1428 |
-
self.demo_dl = iter(demo_dl)
|
1429 |
-
self.sample_rate = sample_rate
|
1430 |
-
self.last_demo_step = -1
|
1431 |
-
|
1432 |
-
@rank_zero_only
|
1433 |
-
@torch.no_grad()
|
1434 |
-
def on_train_batch_end(self, trainer, module: DiffusionAutoencoderTrainingWrapper, outputs, batch, batch_idx):
|
1435 |
-
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
1436 |
-
return
|
1437 |
-
|
1438 |
-
self.last_demo_step = trainer.global_step
|
1439 |
-
|
1440 |
-
demo_reals, metadata = next(self.demo_dl)
|
1441 |
-
|
1442 |
-
# Remove extra dimension added by WebDataset
|
1443 |
-
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
|
1444 |
-
demo_reals = demo_reals[0]
|
1445 |
-
|
1446 |
-
demo_reals = demo_reals.to(module.device)
|
1447 |
-
|
1448 |
-
encoder_input = demo_reals
|
1449 |
-
|
1450 |
-
if module.diffusion.conditioner is not None:
|
1451 |
-
with torch.cuda.amp.autocast():
|
1452 |
-
conditioning_tensors = module.diffusion.conditioner(metadata, module.device)
|
1453 |
-
|
1454 |
-
else:
|
1455 |
-
conditioning_tensors = {}
|
1456 |
-
|
1457 |
-
|
1458 |
-
with torch.no_grad() and torch.cuda.amp.autocast():
|
1459 |
-
if module.prior_type == PriorType.MonoToStereo and encoder_input.shape[1] > 1:
|
1460 |
-
source = encoder_input.mean(dim=1, keepdim=True).repeat(1, encoder_input.shape[1], 1).to(module.device)
|
1461 |
-
|
1462 |
-
if module.diffusion.pretransform is not None:
|
1463 |
-
encoder_input = module.diffusion.pretransform.encode(encoder_input)
|
1464 |
-
source_input = module.diffusion.pretransform.encode(source)
|
1465 |
-
else:
|
1466 |
-
source_input = source
|
1467 |
-
|
1468 |
-
conditioning_tensors['source'] = [source_input]
|
1469 |
-
|
1470 |
-
fakes = sample(module.diffusion_ema.model, torch.randn_like(encoder_input), self.demo_steps, 0, cond=conditioning_tensors)
|
1471 |
-
|
1472 |
-
if module.diffusion.pretransform is not None:
|
1473 |
-
fakes = module.diffusion.pretransform.decode(fakes)
|
1474 |
-
|
1475 |
-
#Interleave reals and fakes
|
1476 |
-
reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n')
|
1477 |
-
|
1478 |
-
# Put the demos together
|
1479 |
-
reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)')
|
1480 |
-
|
1481 |
-
log_dict = {}
|
1482 |
-
|
1483 |
-
filename = f'recon_{trainer.global_step:08}.wav'
|
1484 |
-
reals_fakes = reals_fakes.to(torch.float32).div(torch.max(torch.abs(reals_fakes))).mul(32767).to(torch.int16).cpu()
|
1485 |
-
torchaudio.save(filename, reals_fakes, self.sample_rate)
|
1486 |
-
|
1487 |
-
log_dict[f'recon'] = wandb.Audio(filename,
|
1488 |
-
sample_rate=self.sample_rate,
|
1489 |
-
caption=f'Reconstructed')
|
1490 |
-
|
1491 |
-
log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes))
|
1492 |
-
|
1493 |
-
#Log the source
|
1494 |
-
filename = f'source_{trainer.global_step:08}.wav'
|
1495 |
-
source = rearrange(source, 'b d n -> d (b n)')
|
1496 |
-
source = source.to(torch.float32).mul(32767).to(torch.int16).cpu()
|
1497 |
-
torchaudio.save(filename, source, self.sample_rate)
|
1498 |
-
|
1499 |
-
log_dict[f'source'] = wandb.Audio(filename,
|
1500 |
-
sample_rate=self.sample_rate,
|
1501 |
-
caption=f'Source')
|
1502 |
-
|
1503 |
-
log_dict[f'source_melspec_left'] = wandb.Image(audio_spectrogram_image(source))
|
1504 |
-
|
1505 |
-
trainer.logger.experiment.log(log_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/training/factory.py
DELETED
@@ -1,240 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.nn import Parameter
|
3 |
-
from ..models.factory import create_model_from_config
|
4 |
-
|
5 |
-
def create_training_wrapper_from_config(model_config, model):
|
6 |
-
model_type = model_config.get('model_type', None)
|
7 |
-
assert model_type is not None, 'model_type must be specified in model config'
|
8 |
-
|
9 |
-
training_config = model_config.get('training', None)
|
10 |
-
assert training_config is not None, 'training config must be specified in model config'
|
11 |
-
|
12 |
-
if model_type == 'autoencoder':
|
13 |
-
from .autoencoders import AutoencoderTrainingWrapper
|
14 |
-
|
15 |
-
ema_copy = None
|
16 |
-
|
17 |
-
if training_config.get("use_ema", False):
|
18 |
-
ema_copy = create_model_from_config(model_config)
|
19 |
-
ema_copy = create_model_from_config(model_config) # I don't know why this needs to be called twice but it broke when I called it once
|
20 |
-
# Copy each weight to the ema copy
|
21 |
-
for name, param in model.state_dict().items():
|
22 |
-
if isinstance(param, Parameter):
|
23 |
-
# backwards compatibility for serialized parameters
|
24 |
-
param = param.data
|
25 |
-
ema_copy.state_dict()[name].copy_(param)
|
26 |
-
|
27 |
-
use_ema = training_config.get("use_ema", False)
|
28 |
-
|
29 |
-
latent_mask_ratio = training_config.get("latent_mask_ratio", 0.0)
|
30 |
-
|
31 |
-
teacher_model = training_config.get("teacher_model", None)
|
32 |
-
if teacher_model is not None:
|
33 |
-
teacher_model = create_model_from_config(teacher_model)
|
34 |
-
teacher_model = teacher_model.eval().requires_grad_(False)
|
35 |
-
|
36 |
-
teacher_model_ckpt = training_config.get("teacher_model_ckpt", None)
|
37 |
-
if teacher_model_ckpt is not None:
|
38 |
-
teacher_model.load_state_dict(torch.load(teacher_model_ckpt)["state_dict"])
|
39 |
-
else:
|
40 |
-
raise ValueError("teacher_model_ckpt must be specified if teacher_model is specified")
|
41 |
-
|
42 |
-
return AutoencoderTrainingWrapper(
|
43 |
-
model,
|
44 |
-
lr=training_config["learning_rate"],
|
45 |
-
warmup_steps=training_config.get("warmup_steps", 0),
|
46 |
-
encoder_freeze_on_warmup=training_config.get("encoder_freeze_on_warmup", False),
|
47 |
-
sample_rate=model_config["sample_rate"],
|
48 |
-
loss_config=training_config.get("loss_configs", None),
|
49 |
-
optimizer_configs=training_config.get("optimizer_configs", None),
|
50 |
-
use_ema=use_ema,
|
51 |
-
ema_copy=ema_copy if use_ema else None,
|
52 |
-
force_input_mono=training_config.get("force_input_mono", False),
|
53 |
-
latent_mask_ratio=latent_mask_ratio,
|
54 |
-
teacher_model=teacher_model
|
55 |
-
)
|
56 |
-
elif model_type == 'diffusion_uncond':
|
57 |
-
from .diffusion import DiffusionUncondTrainingWrapper
|
58 |
-
return DiffusionUncondTrainingWrapper(
|
59 |
-
model,
|
60 |
-
lr=training_config["learning_rate"],
|
61 |
-
pre_encoded=training_config.get("pre_encoded", False),
|
62 |
-
)
|
63 |
-
elif model_type == 'diffusion_cond':
|
64 |
-
from .diffusion import DiffusionCondTrainingWrapper
|
65 |
-
return DiffusionCondTrainingWrapper(
|
66 |
-
model,
|
67 |
-
lr=training_config.get("learning_rate", None),
|
68 |
-
mask_padding=training_config.get("mask_padding", False),
|
69 |
-
mask_padding_dropout=training_config.get("mask_padding_dropout", 0.0),
|
70 |
-
use_ema = training_config.get("use_ema", True),
|
71 |
-
log_loss_info=training_config.get("log_loss_info", False),
|
72 |
-
optimizer_configs=training_config.get("optimizer_configs", None),
|
73 |
-
pre_encoded=training_config.get("pre_encoded", False),
|
74 |
-
cfg_dropout_prob = training_config.get("cfg_dropout_prob", 0.1),
|
75 |
-
timestep_sampler = training_config.get("timestep_sampler", "uniform")
|
76 |
-
)
|
77 |
-
elif model_type == 'diffusion_prior':
|
78 |
-
from .diffusion import DiffusionPriorTrainingWrapper
|
79 |
-
from ..models.diffusion_prior import PriorType
|
80 |
-
|
81 |
-
ema_copy = create_model_from_config(model_config)
|
82 |
-
|
83 |
-
# Copy each weight to the ema copy
|
84 |
-
for name, param in model.state_dict().items():
|
85 |
-
if isinstance(param, Parameter):
|
86 |
-
# backwards compatibility for serialized parameters
|
87 |
-
param = param.data
|
88 |
-
ema_copy.state_dict()[name].copy_(param)
|
89 |
-
|
90 |
-
prior_type = training_config.get("prior_type", "mono_stereo")
|
91 |
-
|
92 |
-
if prior_type == "mono_stereo":
|
93 |
-
prior_type_enum = PriorType.MonoToStereo
|
94 |
-
else:
|
95 |
-
raise ValueError(f"Unknown prior type: {prior_type}")
|
96 |
-
|
97 |
-
return DiffusionPriorTrainingWrapper(
|
98 |
-
model,
|
99 |
-
lr=training_config["learning_rate"],
|
100 |
-
ema_copy=ema_copy,
|
101 |
-
prior_type=prior_type_enum,
|
102 |
-
log_loss_info=training_config.get("log_loss_info", False),
|
103 |
-
use_reconstruction_loss=training_config.get("use_reconstruction_loss", False),
|
104 |
-
)
|
105 |
-
elif model_type == 'diffusion_cond_inpaint':
|
106 |
-
from .diffusion import DiffusionCondInpaintTrainingWrapper
|
107 |
-
return DiffusionCondInpaintTrainingWrapper(
|
108 |
-
model,
|
109 |
-
lr=training_config.get("learning_rate", None),
|
110 |
-
max_mask_segments = training_config.get("max_mask_segments", 10),
|
111 |
-
log_loss_info=training_config.get("log_loss_info", False),
|
112 |
-
optimizer_configs=training_config.get("optimizer_configs", None),
|
113 |
-
use_ema=training_config.get("use_ema", True),
|
114 |
-
pre_encoded=training_config.get("pre_encoded", False),
|
115 |
-
cfg_dropout_prob = training_config.get("cfg_dropout_prob", 0.1),
|
116 |
-
timestep_sampler = training_config.get("timestep_sampler", "uniform")
|
117 |
-
)
|
118 |
-
elif model_type == 'diffusion_autoencoder':
|
119 |
-
from .diffusion import DiffusionAutoencoderTrainingWrapper
|
120 |
-
|
121 |
-
ema_copy = create_model_from_config(model_config)
|
122 |
-
|
123 |
-
# Copy each weight to the ema copy
|
124 |
-
for name, param in model.state_dict().items():
|
125 |
-
if isinstance(param, Parameter):
|
126 |
-
# backwards compatibility for serialized parameters
|
127 |
-
param = param.data
|
128 |
-
ema_copy.state_dict()[name].copy_(param)
|
129 |
-
|
130 |
-
return DiffusionAutoencoderTrainingWrapper(
|
131 |
-
model,
|
132 |
-
ema_copy=ema_copy,
|
133 |
-
lr=training_config["learning_rate"],
|
134 |
-
use_reconstruction_loss=training_config.get("use_reconstruction_loss", False)
|
135 |
-
)
|
136 |
-
elif model_type == 'lm':
|
137 |
-
from .lm import AudioLanguageModelTrainingWrapper
|
138 |
-
|
139 |
-
ema_copy = create_model_from_config(model_config)
|
140 |
-
|
141 |
-
for name, param in model.state_dict().items():
|
142 |
-
if isinstance(param, Parameter):
|
143 |
-
# backwards compatibility for serialized parameters
|
144 |
-
param = param.data
|
145 |
-
ema_copy.state_dict()[name].copy_(param)
|
146 |
-
|
147 |
-
return AudioLanguageModelTrainingWrapper(
|
148 |
-
model,
|
149 |
-
ema_copy=ema_copy,
|
150 |
-
lr=training_config.get("learning_rate", None),
|
151 |
-
use_ema=training_config.get("use_ema", False),
|
152 |
-
optimizer_configs=training_config.get("optimizer_configs", None),
|
153 |
-
pre_encoded=training_config.get("pre_encoded", False),
|
154 |
-
)
|
155 |
-
|
156 |
-
else:
|
157 |
-
raise NotImplementedError(f'Unknown model type: {model_type}')
|
158 |
-
|
159 |
-
def create_demo_callback_from_config(model_config, **kwargs):
|
160 |
-
model_type = model_config.get('model_type', None)
|
161 |
-
assert model_type is not None, 'model_type must be specified in model config'
|
162 |
-
|
163 |
-
training_config = model_config.get('training', None)
|
164 |
-
assert training_config is not None, 'training config must be specified in model config'
|
165 |
-
|
166 |
-
demo_config = training_config.get("demo", {})
|
167 |
-
|
168 |
-
if model_type == 'autoencoder':
|
169 |
-
from .autoencoders import AutoencoderDemoCallback
|
170 |
-
return AutoencoderDemoCallback(
|
171 |
-
demo_every=demo_config.get("demo_every", 2000),
|
172 |
-
sample_size=model_config["sample_size"],
|
173 |
-
sample_rate=model_config["sample_rate"],
|
174 |
-
**kwargs
|
175 |
-
)
|
176 |
-
elif model_type == 'diffusion_uncond':
|
177 |
-
from .diffusion import DiffusionUncondDemoCallback
|
178 |
-
return DiffusionUncondDemoCallback(
|
179 |
-
demo_every=demo_config.get("demo_every", 2000),
|
180 |
-
demo_steps=demo_config.get("demo_steps", 250),
|
181 |
-
sample_rate=model_config["sample_rate"]
|
182 |
-
)
|
183 |
-
elif model_type == "diffusion_autoencoder":
|
184 |
-
from .diffusion import DiffusionAutoencoderDemoCallback
|
185 |
-
return DiffusionAutoencoderDemoCallback(
|
186 |
-
demo_every=demo_config.get("demo_every", 2000),
|
187 |
-
demo_steps=demo_config.get("demo_steps", 250),
|
188 |
-
sample_size=model_config["sample_size"],
|
189 |
-
sample_rate=model_config["sample_rate"],
|
190 |
-
**kwargs
|
191 |
-
)
|
192 |
-
elif model_type == "diffusion_prior":
|
193 |
-
from .diffusion import DiffusionPriorDemoCallback
|
194 |
-
return DiffusionPriorDemoCallback(
|
195 |
-
demo_every=demo_config.get("demo_every", 2000),
|
196 |
-
demo_steps=demo_config.get("demo_steps", 250),
|
197 |
-
sample_size=model_config["sample_size"],
|
198 |
-
sample_rate=model_config["sample_rate"],
|
199 |
-
**kwargs
|
200 |
-
)
|
201 |
-
elif model_type == "diffusion_cond":
|
202 |
-
from .diffusion import DiffusionCondDemoCallback
|
203 |
-
|
204 |
-
return DiffusionCondDemoCallback(
|
205 |
-
demo_every=demo_config.get("demo_every", 2000),
|
206 |
-
sample_size=model_config["sample_size"],
|
207 |
-
sample_rate=model_config["sample_rate"],
|
208 |
-
demo_steps=demo_config.get("demo_steps", 250),
|
209 |
-
num_demos=demo_config["num_demos"],
|
210 |
-
demo_cfg_scales=demo_config["demo_cfg_scales"],
|
211 |
-
demo_conditioning=demo_config.get("demo_cond", {}),
|
212 |
-
demo_cond_from_batch=demo_config.get("demo_cond_from_batch", False),
|
213 |
-
display_audio_cond=demo_config.get("display_audio_cond", False),
|
214 |
-
)
|
215 |
-
elif model_type == "diffusion_cond_inpaint":
|
216 |
-
from .diffusion import DiffusionCondInpaintDemoCallback
|
217 |
-
|
218 |
-
return DiffusionCondInpaintDemoCallback(
|
219 |
-
demo_every=demo_config.get("demo_every", 2000),
|
220 |
-
sample_size=model_config["sample_size"],
|
221 |
-
sample_rate=model_config["sample_rate"],
|
222 |
-
demo_steps=demo_config.get("demo_steps", 250),
|
223 |
-
demo_cfg_scales=demo_config["demo_cfg_scales"],
|
224 |
-
**kwargs
|
225 |
-
)
|
226 |
-
|
227 |
-
elif model_type == "lm":
|
228 |
-
from .lm import AudioLanguageModelDemoCallback
|
229 |
-
|
230 |
-
return AudioLanguageModelDemoCallback(
|
231 |
-
demo_every=demo_config.get("demo_every", 2000),
|
232 |
-
sample_size=model_config["sample_size"],
|
233 |
-
sample_rate=model_config["sample_rate"],
|
234 |
-
demo_cfg_scales=demo_config.get("demo_cfg_scales", [1]),
|
235 |
-
demo_conditioning=demo_config.get("demo_cond", None),
|
236 |
-
num_demos=demo_config.get("num_demos", 8),
|
237 |
-
**kwargs
|
238 |
-
)
|
239 |
-
else:
|
240 |
-
raise NotImplementedError(f'Unknown model type: {model_type}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/training/lm.py
DELETED
@@ -1,267 +0,0 @@
|
|
1 |
-
import pytorch_lightning as pl
|
2 |
-
import sys, gc
|
3 |
-
import random
|
4 |
-
import torch
|
5 |
-
import torchaudio
|
6 |
-
import typing as tp
|
7 |
-
import wandb
|
8 |
-
|
9 |
-
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
|
10 |
-
from ema_pytorch import EMA
|
11 |
-
from einops import rearrange
|
12 |
-
from safetensors.torch import save_file
|
13 |
-
from torch import optim
|
14 |
-
from torch.nn import functional as F
|
15 |
-
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
16 |
-
|
17 |
-
from ..models.lm import AudioLanguageModelWrapper
|
18 |
-
from .utils import create_optimizer_from_config, create_scheduler_from_config
|
19 |
-
|
20 |
-
class AudioLanguageModelTrainingWrapper(pl.LightningModule):
|
21 |
-
def __init__(
|
22 |
-
self,
|
23 |
-
model: AudioLanguageModelWrapper,
|
24 |
-
lr = 1e-4,
|
25 |
-
use_ema=False,
|
26 |
-
ema_copy=None,
|
27 |
-
optimizer_configs: dict = None,
|
28 |
-
pre_encoded=False
|
29 |
-
):
|
30 |
-
super().__init__()
|
31 |
-
|
32 |
-
self.model = model
|
33 |
-
|
34 |
-
self.model.pretransform.requires_grad_(False)
|
35 |
-
|
36 |
-
self.model_ema = None
|
37 |
-
if use_ema:
|
38 |
-
self.model_ema = EMA(self.model, ema_model=ema_copy, beta=0.99, update_every=10)
|
39 |
-
|
40 |
-
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"
|
41 |
-
|
42 |
-
if optimizer_configs is None:
|
43 |
-
optimizer_configs = {
|
44 |
-
"lm": {
|
45 |
-
"optimizer": {
|
46 |
-
"type": "AdamW",
|
47 |
-
"config": {
|
48 |
-
"lr": lr,
|
49 |
-
"betas": (0.9, 0.95),
|
50 |
-
"weight_decay": 0.1
|
51 |
-
}
|
52 |
-
}
|
53 |
-
}
|
54 |
-
}
|
55 |
-
else:
|
56 |
-
if lr is not None:
|
57 |
-
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
|
58 |
-
|
59 |
-
self.optimizer_configs = optimizer_configs
|
60 |
-
|
61 |
-
self.pre_encoded = pre_encoded
|
62 |
-
|
63 |
-
def configure_optimizers(self):
|
64 |
-
lm_opt_config = self.optimizer_configs['lm']
|
65 |
-
opt_lm = create_optimizer_from_config(lm_opt_config['optimizer'], self.model.parameters())
|
66 |
-
|
67 |
-
if "scheduler" in lm_opt_config:
|
68 |
-
sched_lm = create_scheduler_from_config(lm_opt_config['scheduler'], opt_lm)
|
69 |
-
sched_lm_config = {
|
70 |
-
"scheduler": sched_lm,
|
71 |
-
"interval": "step"
|
72 |
-
}
|
73 |
-
return [opt_lm], [sched_lm_config]
|
74 |
-
|
75 |
-
return [opt_lm]
|
76 |
-
|
77 |
-
# Copied and modified from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/solvers/musicgen.py under MIT license
|
78 |
-
# License can be found in LICENSES/LICENSE_META.txt
|
79 |
-
|
80 |
-
def _compute_cross_entropy(
|
81 |
-
self, logits: torch.Tensor, targets: torch.Tensor, mask: torch.Tensor
|
82 |
-
) -> tp.Tuple[torch.Tensor, tp.List[torch.Tensor]]:
|
83 |
-
"""Compute cross entropy between multi-codebook targets and model's logits.
|
84 |
-
The cross entropy is computed per codebook to provide codebook-level cross entropy.
|
85 |
-
Valid timesteps for each of the codebook are pulled from the mask, where invalid
|
86 |
-
timesteps are set to 0.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
|
90 |
-
targets (torch.Tensor): Target codes, of shape [B, K, T].
|
91 |
-
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
|
92 |
-
Returns:
|
93 |
-
ce (torch.Tensor): Cross entropy averaged over the codebooks
|
94 |
-
ce_per_codebook (list of torch.Tensor): Cross entropy per codebook (detached).
|
95 |
-
"""
|
96 |
-
B, K, T = targets.shape
|
97 |
-
assert logits.shape[:-1] == targets.shape
|
98 |
-
assert mask.shape == targets.shape
|
99 |
-
ce = torch.zeros([], device=targets.device)
|
100 |
-
ce_per_codebook: tp.List[torch.Tensor] = []
|
101 |
-
for k in range(K):
|
102 |
-
logits_k = logits[:, k, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
|
103 |
-
targets_k = targets[:, k, ...].contiguous().view(-1) # [B x T]
|
104 |
-
mask_k = mask[:, k, ...].contiguous().view(-1) # [B x T]
|
105 |
-
ce_targets = targets_k[mask_k]
|
106 |
-
ce_logits = logits_k[mask_k]
|
107 |
-
q_ce = F.cross_entropy(ce_logits, ce_targets)
|
108 |
-
ce += q_ce
|
109 |
-
ce_per_codebook.append(q_ce.detach())
|
110 |
-
# average cross entropy across codebooks
|
111 |
-
ce = ce / K
|
112 |
-
return ce, ce_per_codebook
|
113 |
-
|
114 |
-
def training_step(self, batch, batch_idx):
|
115 |
-
reals, metadata = batch
|
116 |
-
|
117 |
-
if reals.ndim == 4 and reals.shape[0] == 1:
|
118 |
-
reals = reals[0]
|
119 |
-
|
120 |
-
if not self.pre_encoded:
|
121 |
-
codes = self.model.pretransform.tokenize(reals)
|
122 |
-
else:
|
123 |
-
codes = reals
|
124 |
-
|
125 |
-
padding_masks = []
|
126 |
-
for md in metadata:
|
127 |
-
if md["padding_mask"].ndim == 1:
|
128 |
-
padding_masks.append(md["padding_mask"])
|
129 |
-
else:
|
130 |
-
padding_masks.append(md["padding_mask"][0])
|
131 |
-
|
132 |
-
padding_masks = torch.stack(padding_masks, dim=0).to(self.device) # Shape (batch_size, sequence_length)
|
133 |
-
|
134 |
-
# Interpolate padding masks to the same length as the codes
|
135 |
-
padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=codes.shape[2], mode='nearest').bool()
|
136 |
-
|
137 |
-
condition_tensors = None
|
138 |
-
|
139 |
-
# If the model is conditioned, get the conditioning tensors
|
140 |
-
if self.model.conditioner is not None:
|
141 |
-
condition_tensors = self.model.conditioner(metadata, self.device)
|
142 |
-
|
143 |
-
lm_output = self.model.compute_logits(codes, condition_tensors=condition_tensors, cfg_dropout_prob=0.1)
|
144 |
-
|
145 |
-
logits = lm_output.logits # [b, k, t, c]
|
146 |
-
logits_mask = lm_output.mask # [b, k, t]
|
147 |
-
|
148 |
-
logits_mask = logits_mask & padding_masks
|
149 |
-
|
150 |
-
cross_entropy, cross_entropy_per_codebook = self._compute_cross_entropy(logits, codes, logits_mask)
|
151 |
-
|
152 |
-
loss = cross_entropy
|
153 |
-
|
154 |
-
log_dict = {
|
155 |
-
'train/loss': loss.detach(),
|
156 |
-
'train/cross_entropy': cross_entropy.detach(),
|
157 |
-
'train/perplexity': torch.exp(cross_entropy).detach(),
|
158 |
-
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
|
159 |
-
}
|
160 |
-
|
161 |
-
for k, ce_q in enumerate(cross_entropy_per_codebook):
|
162 |
-
log_dict[f'cross_entropy_q{k + 1}'] = ce_q
|
163 |
-
log_dict[f'perplexity_q{k + 1}'] = torch.exp(ce_q)
|
164 |
-
|
165 |
-
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
166 |
-
return loss
|
167 |
-
|
168 |
-
def on_before_zero_grad(self, *args, **kwargs):
|
169 |
-
if self.model_ema is not None:
|
170 |
-
self.model_ema.update()
|
171 |
-
|
172 |
-
def export_model(self, path, use_safetensors=False):
|
173 |
-
|
174 |
-
model = self.model_ema.ema_model if self.model_ema is not None else self.model
|
175 |
-
|
176 |
-
if use_safetensors:
|
177 |
-
save_file(model.state_dict(), path)
|
178 |
-
else:
|
179 |
-
torch.save({"state_dict": model.state_dict()}, path)
|
180 |
-
|
181 |
-
|
182 |
-
class AudioLanguageModelDemoCallback(pl.Callback):
|
183 |
-
def __init__(self,
|
184 |
-
demo_every=2000,
|
185 |
-
num_demos=8,
|
186 |
-
sample_size=65536,
|
187 |
-
sample_rate=48000,
|
188 |
-
demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = None,
|
189 |
-
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7],
|
190 |
-
**kwargs
|
191 |
-
):
|
192 |
-
super().__init__()
|
193 |
-
|
194 |
-
self.demo_every = demo_every
|
195 |
-
self.num_demos = num_demos
|
196 |
-
self.demo_samples = sample_size
|
197 |
-
self.sample_rate = sample_rate
|
198 |
-
self.last_demo_step = -1
|
199 |
-
self.demo_conditioning = demo_conditioning
|
200 |
-
self.demo_cfg_scales = demo_cfg_scales
|
201 |
-
|
202 |
-
@rank_zero_only
|
203 |
-
@torch.no_grad()
|
204 |
-
def on_train_batch_end(self, trainer, module: AudioLanguageModelTrainingWrapper, outputs, batch, batch_idx):
|
205 |
-
|
206 |
-
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
207 |
-
return
|
208 |
-
|
209 |
-
module.eval()
|
210 |
-
|
211 |
-
print(f"Generating demo")
|
212 |
-
self.last_demo_step = trainer.global_step
|
213 |
-
|
214 |
-
demo_length_tokens = self.demo_samples // module.model.pretransform.downsampling_ratio
|
215 |
-
|
216 |
-
#demo_reals = batch[0][:self.num_demos]
|
217 |
-
|
218 |
-
# if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
|
219 |
-
# demo_reals = demo_reals[0]
|
220 |
-
|
221 |
-
#demo_reals_tokens = module.model.pretransform.tokenize(demo_reals)
|
222 |
-
|
223 |
-
##Limit to first 50 tokens
|
224 |
-
#demo_reals_tokens = demo_reals_tokens[:, :, :50]
|
225 |
-
|
226 |
-
try:
|
227 |
-
print("Getting conditioning")
|
228 |
-
|
229 |
-
for cfg_scale in self.demo_cfg_scales:
|
230 |
-
|
231 |
-
model = module.model # module.model_ema.ema_model if module.model_ema is not None else module.model
|
232 |
-
|
233 |
-
print(f"Generating demo for cfg scale {cfg_scale}")
|
234 |
-
fakes = model.generate_audio(
|
235 |
-
batch_size=self.num_demos,
|
236 |
-
max_gen_len=demo_length_tokens,
|
237 |
-
conditioning=self.demo_conditioning,
|
238 |
-
#init_data = demo_reals_tokens,
|
239 |
-
cfg_scale=cfg_scale,
|
240 |
-
temp=1.0,
|
241 |
-
top_p=0.95
|
242 |
-
)
|
243 |
-
|
244 |
-
# Put the demos together
|
245 |
-
fakes = rearrange(fakes, 'b d n -> d (b n)')
|
246 |
-
|
247 |
-
log_dict = {}
|
248 |
-
|
249 |
-
filename = f'demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
|
250 |
-
fakes = fakes / fakes.abs().max()
|
251 |
-
fakes = fakes.type(torch.float32).clamp(-1, 1).mul(32767).type(torch.int16).cpu()
|
252 |
-
torchaudio.save(filename, fakes, self.sample_rate)
|
253 |
-
|
254 |
-
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
|
255 |
-
sample_rate=self.sample_rate,
|
256 |
-
caption=f'Reconstructed')
|
257 |
-
|
258 |
-
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
|
259 |
-
|
260 |
-
trainer.logger.experiment.log(log_dict)
|
261 |
-
|
262 |
-
except Exception as e:
|
263 |
-
raise e
|
264 |
-
finally:
|
265 |
-
gc.collect()
|
266 |
-
torch.cuda.empty_cache()
|
267 |
-
module.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/training/losses/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .losses import *
|
|
|
|
stable/build/lib/stable_audio_tools/training/losses/auraloss.py
DELETED
@@ -1,607 +0,0 @@
|
|
1 |
-
# Copied and modified from https://github.com/csteinmetz1/auraloss/blob/main/auraloss/freq.py under Apache License 2.0
|
2 |
-
# You can find the license at LICENSES/LICENSE_AURALOSS.txt
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
from typing import List, Any
|
7 |
-
import scipy.signal
|
8 |
-
|
9 |
-
def apply_reduction(losses, reduction="none"):
|
10 |
-
"""Apply reduction to collection of losses."""
|
11 |
-
if reduction == "mean":
|
12 |
-
losses = losses.mean()
|
13 |
-
elif reduction == "sum":
|
14 |
-
losses = losses.sum()
|
15 |
-
return losses
|
16 |
-
|
17 |
-
def get_window(win_type: str, win_length: int):
|
18 |
-
"""Return a window function.
|
19 |
-
|
20 |
-
Args:
|
21 |
-
win_type (str): Window type. Can either be one of the window function provided in PyTorch
|
22 |
-
['hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window']
|
23 |
-
or any of the windows provided by [SciPy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.get_window.html).
|
24 |
-
win_length (int): Window length
|
25 |
-
|
26 |
-
Returns:
|
27 |
-
win: The window as a 1D torch tensor
|
28 |
-
"""
|
29 |
-
|
30 |
-
try:
|
31 |
-
win = getattr(torch, win_type)(win_length)
|
32 |
-
except:
|
33 |
-
win = torch.from_numpy(scipy.signal.windows.get_window(win_type, win_length))
|
34 |
-
|
35 |
-
return win
|
36 |
-
|
37 |
-
class SumAndDifference(torch.nn.Module):
|
38 |
-
"""Sum and difference signal extraction module."""
|
39 |
-
|
40 |
-
def __init__(self):
|
41 |
-
"""Initialize sum and difference extraction module."""
|
42 |
-
super(SumAndDifference, self).__init__()
|
43 |
-
|
44 |
-
def forward(self, x):
|
45 |
-
"""Calculate forward propagation.
|
46 |
-
|
47 |
-
Args:
|
48 |
-
x (Tensor): Predicted signal (B, #channels, #samples).
|
49 |
-
Returns:
|
50 |
-
Tensor: Sum signal.
|
51 |
-
Tensor: Difference signal.
|
52 |
-
"""
|
53 |
-
if not (x.size(1) == 2): # inputs must be stereo
|
54 |
-
raise ValueError(f"Input must be stereo: {x.size(1)} channel(s).")
|
55 |
-
|
56 |
-
sum_sig = self.sum(x).unsqueeze(1)
|
57 |
-
diff_sig = self.diff(x).unsqueeze(1)
|
58 |
-
|
59 |
-
return sum_sig, diff_sig
|
60 |
-
|
61 |
-
@staticmethod
|
62 |
-
def sum(x):
|
63 |
-
return x[:, 0, :] + x[:, 1, :]
|
64 |
-
|
65 |
-
@staticmethod
|
66 |
-
def diff(x):
|
67 |
-
return x[:, 0, :] - x[:, 1, :]
|
68 |
-
|
69 |
-
|
70 |
-
class FIRFilter(torch.nn.Module):
|
71 |
-
"""FIR pre-emphasis filtering module.
|
72 |
-
|
73 |
-
Args:
|
74 |
-
filter_type (str): Shape of the desired FIR filter ("hp", "fd", "aw"). Default: "hp"
|
75 |
-
coef (float): Coefficient value for the filter tap (only applicable for "hp" and "fd"). Default: 0.85
|
76 |
-
ntaps (int): Number of FIR filter taps for constructing A-weighting filters. Default: 101
|
77 |
-
plot (bool): Plot the magnitude respond of the filter. Default: False
|
78 |
-
|
79 |
-
Based upon the perceptual loss pre-empahsis filters proposed by
|
80 |
-
[Wright & Välimäki, 2019](https://arxiv.org/abs/1911.08922).
|
81 |
-
|
82 |
-
A-weighting filter - "aw"
|
83 |
-
First-order highpass - "hp"
|
84 |
-
Folded differentiator - "fd"
|
85 |
-
|
86 |
-
Note that the default coefficeint value of 0.85 is optimized for
|
87 |
-
a sampling rate of 44.1 kHz, considering adjusting this value at differnt sampling rates.
|
88 |
-
"""
|
89 |
-
|
90 |
-
def __init__(self, filter_type="hp", coef=0.85, fs=44100, ntaps=101, plot=False):
|
91 |
-
"""Initilize FIR pre-emphasis filtering module."""
|
92 |
-
super(FIRFilter, self).__init__()
|
93 |
-
self.filter_type = filter_type
|
94 |
-
self.coef = coef
|
95 |
-
self.fs = fs
|
96 |
-
self.ntaps = ntaps
|
97 |
-
self.plot = plot
|
98 |
-
|
99 |
-
import scipy.signal
|
100 |
-
|
101 |
-
if ntaps % 2 == 0:
|
102 |
-
raise ValueError(f"ntaps must be odd (ntaps={ntaps}).")
|
103 |
-
|
104 |
-
if filter_type == "hp":
|
105 |
-
self.fir = torch.nn.Conv1d(1, 1, kernel_size=3, bias=False, padding=1)
|
106 |
-
self.fir.weight.requires_grad = False
|
107 |
-
self.fir.weight.data = torch.tensor([1, -coef, 0]).view(1, 1, -1)
|
108 |
-
elif filter_type == "fd":
|
109 |
-
self.fir = torch.nn.Conv1d(1, 1, kernel_size=3, bias=False, padding=1)
|
110 |
-
self.fir.weight.requires_grad = False
|
111 |
-
self.fir.weight.data = torch.tensor([1, 0, -coef]).view(1, 1, -1)
|
112 |
-
elif filter_type == "aw":
|
113 |
-
# Definition of analog A-weighting filter according to IEC/CD 1672.
|
114 |
-
f1 = 20.598997
|
115 |
-
f2 = 107.65265
|
116 |
-
f3 = 737.86223
|
117 |
-
f4 = 12194.217
|
118 |
-
A1000 = 1.9997
|
119 |
-
|
120 |
-
NUMs = [(2 * np.pi * f4) ** 2 * (10 ** (A1000 / 20)), 0, 0, 0, 0]
|
121 |
-
DENs = np.polymul(
|
122 |
-
[1, 4 * np.pi * f4, (2 * np.pi * f4) ** 2],
|
123 |
-
[1, 4 * np.pi * f1, (2 * np.pi * f1) ** 2],
|
124 |
-
)
|
125 |
-
DENs = np.polymul(
|
126 |
-
np.polymul(DENs, [1, 2 * np.pi * f3]), [1, 2 * np.pi * f2]
|
127 |
-
)
|
128 |
-
|
129 |
-
# convert analog filter to digital filter
|
130 |
-
b, a = scipy.signal.bilinear(NUMs, DENs, fs=fs)
|
131 |
-
|
132 |
-
# compute the digital filter frequency response
|
133 |
-
w_iir, h_iir = scipy.signal.freqz(b, a, worN=512, fs=fs)
|
134 |
-
|
135 |
-
# then we fit to 101 tap FIR filter with least squares
|
136 |
-
taps = scipy.signal.firls(ntaps, w_iir, abs(h_iir), fs=fs)
|
137 |
-
|
138 |
-
# now implement this digital FIR filter as a Conv1d layer
|
139 |
-
self.fir = torch.nn.Conv1d(
|
140 |
-
1, 1, kernel_size=ntaps, bias=False, padding=ntaps // 2
|
141 |
-
)
|
142 |
-
self.fir.weight.requires_grad = False
|
143 |
-
self.fir.weight.data = torch.tensor(taps.astype("float32")).view(1, 1, -1)
|
144 |
-
|
145 |
-
if plot:
|
146 |
-
from .plotting import compare_filters
|
147 |
-
compare_filters(b, a, taps, fs=fs)
|
148 |
-
|
149 |
-
def forward(self, input, target):
|
150 |
-
"""Calculate forward propagation.
|
151 |
-
Args:
|
152 |
-
input (Tensor): Predicted signal (B, #channels, #samples).
|
153 |
-
target (Tensor): Groundtruth signal (B, #channels, #samples).
|
154 |
-
Returns:
|
155 |
-
Tensor: Filtered signal.
|
156 |
-
"""
|
157 |
-
input = torch.nn.functional.conv1d(
|
158 |
-
input, self.fir.weight.data, padding=self.ntaps // 2
|
159 |
-
)
|
160 |
-
target = torch.nn.functional.conv1d(
|
161 |
-
target, self.fir.weight.data, padding=self.ntaps // 2
|
162 |
-
)
|
163 |
-
return input, target
|
164 |
-
|
165 |
-
class SpectralConvergenceLoss(torch.nn.Module):
|
166 |
-
"""Spectral convergence loss module.
|
167 |
-
|
168 |
-
See [Arik et al., 2018](https://arxiv.org/abs/1808.06719).
|
169 |
-
"""
|
170 |
-
|
171 |
-
def __init__(self):
|
172 |
-
super(SpectralConvergenceLoss, self).__init__()
|
173 |
-
|
174 |
-
def forward(self, x_mag, y_mag):
|
175 |
-
return (torch.norm(y_mag - x_mag, p="fro", dim=[-1, -2]) / torch.norm(y_mag, p="fro", dim=[-1, -2])).mean()
|
176 |
-
|
177 |
-
class STFTMagnitudeLoss(torch.nn.Module):
|
178 |
-
"""STFT magnitude loss module.
|
179 |
-
|
180 |
-
See [Arik et al., 2018](https://arxiv.org/abs/1808.06719)
|
181 |
-
and [Engel et al., 2020](https://arxiv.org/abs/2001.04643v1)
|
182 |
-
|
183 |
-
Log-magnitudes are calculated with `log(log_fac*x + log_eps)`, where `log_fac` controls the
|
184 |
-
compression strength (larger value results in more compression), and `log_eps` can be used
|
185 |
-
to control the range of the compressed output values (e.g., `log_eps>=1` ensures positive
|
186 |
-
output values). The default values `log_fac=1` and `log_eps=0` correspond to plain log-compression.
|
187 |
-
|
188 |
-
Args:
|
189 |
-
log (bool, optional): Log-scale the STFT magnitudes,
|
190 |
-
or use linear scale. Default: True
|
191 |
-
log_eps (float, optional): Constant value added to the magnitudes before evaluating the logarithm.
|
192 |
-
Default: 0.0
|
193 |
-
log_fac (float, optional): Constant multiplication factor for the magnitudes before evaluating the logarithm.
|
194 |
-
Default: 1.0
|
195 |
-
distance (str, optional): Distance function ["L1", "L2"]. Default: "L1"
|
196 |
-
reduction (str, optional): Reduction of the loss elements. Default: "mean"
|
197 |
-
"""
|
198 |
-
|
199 |
-
def __init__(self, log=True, log_eps=0.0, log_fac=1.0, distance="L1", reduction="mean"):
|
200 |
-
super(STFTMagnitudeLoss, self).__init__()
|
201 |
-
|
202 |
-
self.log = log
|
203 |
-
self.log_eps = log_eps
|
204 |
-
self.log_fac = log_fac
|
205 |
-
|
206 |
-
if distance == "L1":
|
207 |
-
self.distance = torch.nn.L1Loss(reduction=reduction)
|
208 |
-
elif distance == "L2":
|
209 |
-
self.distance = torch.nn.MSELoss(reduction=reduction)
|
210 |
-
else:
|
211 |
-
raise ValueError(f"Invalid distance: '{distance}'.")
|
212 |
-
|
213 |
-
def forward(self, x_mag, y_mag):
|
214 |
-
if self.log:
|
215 |
-
x_mag = torch.log(self.log_fac * x_mag + self.log_eps)
|
216 |
-
y_mag = torch.log(self.log_fac * y_mag + self.log_eps)
|
217 |
-
return self.distance(x_mag, y_mag)
|
218 |
-
|
219 |
-
|
220 |
-
class STFTLoss(torch.nn.Module):
|
221 |
-
"""STFT loss module.
|
222 |
-
|
223 |
-
See [Yamamoto et al. 2019](https://arxiv.org/abs/1904.04472).
|
224 |
-
|
225 |
-
Args:
|
226 |
-
fft_size (int, optional): FFT size in samples. Default: 1024
|
227 |
-
hop_size (int, optional): Hop size of the FFT in samples. Default: 256
|
228 |
-
win_length (int, optional): Length of the FFT analysis window. Default: 1024
|
229 |
-
window (str, optional): Window to apply before FFT, can either be one of the window function provided in PyTorch
|
230 |
-
['hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window']
|
231 |
-
or any of the windows provided by [SciPy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.get_window.html).
|
232 |
-
Default: 'hann_window'
|
233 |
-
w_sc (float, optional): Weight of the spectral convergence loss term. Default: 1.0
|
234 |
-
w_log_mag (float, optional): Weight of the log magnitude loss term. Default: 1.0
|
235 |
-
w_lin_mag_mag (float, optional): Weight of the linear magnitude loss term. Default: 0.0
|
236 |
-
w_phs (float, optional): Weight of the spectral phase loss term. Default: 0.0
|
237 |
-
sample_rate (int, optional): Sample rate. Required when scale = 'mel'. Default: None
|
238 |
-
scale (str, optional): Optional frequency scaling method, options include:
|
239 |
-
['mel', 'chroma']
|
240 |
-
Default: None
|
241 |
-
n_bins (int, optional): Number of scaling frequency bins. Default: None.
|
242 |
-
perceptual_weighting (bool, optional): Apply perceptual A-weighting (Sample rate must be supplied). Default: False
|
243 |
-
scale_invariance (bool, optional): Perform an optimal scaling of the target. Default: False
|
244 |
-
eps (float, optional): Small epsilon value for stablity. Default: 1e-8
|
245 |
-
output (str, optional): Format of the loss returned.
|
246 |
-
'loss' : Return only the raw, aggregate loss term.
|
247 |
-
'full' : Return the raw loss, plus intermediate loss terms.
|
248 |
-
Default: 'loss'
|
249 |
-
reduction (str, optional): Specifies the reduction to apply to the output:
|
250 |
-
'none': no reduction will be applied,
|
251 |
-
'mean': the sum of the output will be divided by the number of elements in the output,
|
252 |
-
'sum': the output will be summed.
|
253 |
-
Default: 'mean'
|
254 |
-
mag_distance (str, optional): Distance function ["L1", "L2"] for the magnitude loss terms.
|
255 |
-
device (str, optional): Place the filterbanks on specified device. Default: None
|
256 |
-
|
257 |
-
Returns:
|
258 |
-
loss:
|
259 |
-
Aggreate loss term. Only returned if output='loss'. By default.
|
260 |
-
loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss:
|
261 |
-
Aggregate and intermediate loss terms. Only returned if output='full'.
|
262 |
-
"""
|
263 |
-
|
264 |
-
def __init__(
|
265 |
-
self,
|
266 |
-
fft_size: int = 1024,
|
267 |
-
hop_size: int = 256,
|
268 |
-
win_length: int = 1024,
|
269 |
-
window: str = "hann_window",
|
270 |
-
w_sc: float = 1.0,
|
271 |
-
w_log_mag: float = 1.0,
|
272 |
-
w_lin_mag: float = 0.0,
|
273 |
-
w_phs: float = 0.0,
|
274 |
-
sample_rate: float = None,
|
275 |
-
scale: str = None,
|
276 |
-
n_bins: int = None,
|
277 |
-
perceptual_weighting: bool = False,
|
278 |
-
scale_invariance: bool = False,
|
279 |
-
eps: float = 1e-8,
|
280 |
-
output: str = "loss",
|
281 |
-
reduction: str = "mean",
|
282 |
-
mag_distance: str = "L1",
|
283 |
-
device: Any = None,
|
284 |
-
**kwargs
|
285 |
-
):
|
286 |
-
super().__init__()
|
287 |
-
self.fft_size = fft_size
|
288 |
-
self.hop_size = hop_size
|
289 |
-
self.win_length = win_length
|
290 |
-
self.window = get_window(window, win_length)
|
291 |
-
self.w_sc = w_sc
|
292 |
-
self.w_log_mag = w_log_mag
|
293 |
-
self.w_lin_mag = w_lin_mag
|
294 |
-
self.w_phs = w_phs
|
295 |
-
self.sample_rate = sample_rate
|
296 |
-
self.scale = scale
|
297 |
-
self.n_bins = n_bins
|
298 |
-
self.perceptual_weighting = perceptual_weighting
|
299 |
-
self.scale_invariance = scale_invariance
|
300 |
-
self.eps = eps
|
301 |
-
self.output = output
|
302 |
-
self.reduction = reduction
|
303 |
-
self.mag_distance = mag_distance
|
304 |
-
self.device = device
|
305 |
-
|
306 |
-
self.phs_used = bool(self.w_phs)
|
307 |
-
|
308 |
-
self.spectralconv = SpectralConvergenceLoss()
|
309 |
-
self.logstft = STFTMagnitudeLoss(
|
310 |
-
log=True,
|
311 |
-
reduction=reduction,
|
312 |
-
distance=mag_distance,
|
313 |
-
**kwargs
|
314 |
-
)
|
315 |
-
self.linstft = STFTMagnitudeLoss(
|
316 |
-
log=False,
|
317 |
-
reduction=reduction,
|
318 |
-
distance=mag_distance,
|
319 |
-
**kwargs
|
320 |
-
)
|
321 |
-
|
322 |
-
# setup mel filterbank
|
323 |
-
if scale is not None:
|
324 |
-
try:
|
325 |
-
import librosa.filters
|
326 |
-
except Exception as e:
|
327 |
-
print(e)
|
328 |
-
print("Try `pip install auraloss[all]`.")
|
329 |
-
|
330 |
-
if self.scale == "mel":
|
331 |
-
assert sample_rate != None # Must set sample rate to use mel scale
|
332 |
-
assert n_bins <= fft_size # Must be more FFT bins than Mel bins
|
333 |
-
fb = librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=n_bins)
|
334 |
-
fb = torch.tensor(fb).unsqueeze(0)
|
335 |
-
|
336 |
-
elif self.scale == "chroma":
|
337 |
-
assert sample_rate != None # Must set sample rate to use chroma scale
|
338 |
-
assert n_bins <= fft_size # Must be more FFT bins than chroma bins
|
339 |
-
fb = librosa.filters.chroma(
|
340 |
-
sr=sample_rate, n_fft=fft_size, n_chroma=n_bins
|
341 |
-
)
|
342 |
-
|
343 |
-
else:
|
344 |
-
raise ValueError(
|
345 |
-
f"Invalid scale: {self.scale}. Must be 'mel' or 'chroma'."
|
346 |
-
)
|
347 |
-
|
348 |
-
self.register_buffer("fb", fb)
|
349 |
-
|
350 |
-
if scale is not None and device is not None:
|
351 |
-
self.fb = self.fb.to(self.device) # move filterbank to device
|
352 |
-
|
353 |
-
if self.perceptual_weighting:
|
354 |
-
if sample_rate is None:
|
355 |
-
raise ValueError(
|
356 |
-
f"`sample_rate` must be supplied when `perceptual_weighting = True`."
|
357 |
-
)
|
358 |
-
self.prefilter = FIRFilter(filter_type="aw", fs=sample_rate)
|
359 |
-
|
360 |
-
def stft(self, x):
|
361 |
-
"""Perform STFT.
|
362 |
-
Args:
|
363 |
-
x (Tensor): Input signal tensor (B, T).
|
364 |
-
|
365 |
-
Returns:
|
366 |
-
Tensor: x_mag, x_phs
|
367 |
-
Magnitude and phase spectra (B, fft_size // 2 + 1, frames).
|
368 |
-
"""
|
369 |
-
x_stft = torch.stft(
|
370 |
-
x,
|
371 |
-
self.fft_size,
|
372 |
-
self.hop_size,
|
373 |
-
self.win_length,
|
374 |
-
self.window,
|
375 |
-
return_complex=True,
|
376 |
-
)
|
377 |
-
x_mag = torch.sqrt(
|
378 |
-
torch.clamp((x_stft.real**2) + (x_stft.imag**2), min=self.eps)
|
379 |
-
)
|
380 |
-
|
381 |
-
# torch.angle is expensive, so it is only evaluated if the values are used in the loss
|
382 |
-
if self.phs_used:
|
383 |
-
x_phs = torch.angle(x_stft)
|
384 |
-
else:
|
385 |
-
x_phs = None
|
386 |
-
|
387 |
-
return x_mag, x_phs
|
388 |
-
|
389 |
-
def forward(self, input: torch.Tensor, target: torch.Tensor):
|
390 |
-
bs, chs, seq_len = input.size()
|
391 |
-
|
392 |
-
if self.perceptual_weighting: # apply optional A-weighting via FIR filter
|
393 |
-
# since FIRFilter only support mono audio we will move channels to batch dim
|
394 |
-
input = input.view(bs * chs, 1, -1)
|
395 |
-
target = target.view(bs * chs, 1, -1)
|
396 |
-
|
397 |
-
# now apply the filter to both
|
398 |
-
self.prefilter.to(input.device)
|
399 |
-
input, target = self.prefilter(input, target)
|
400 |
-
|
401 |
-
# now move the channels back
|
402 |
-
input = input.view(bs, chs, -1)
|
403 |
-
target = target.view(bs, chs, -1)
|
404 |
-
|
405 |
-
# compute the magnitude and phase spectra of input and target
|
406 |
-
self.window = self.window.to(input.device)
|
407 |
-
|
408 |
-
x_mag, x_phs = self.stft(input.view(-1, input.size(-1)))
|
409 |
-
y_mag, y_phs = self.stft(target.view(-1, target.size(-1)))
|
410 |
-
|
411 |
-
# apply relevant transforms
|
412 |
-
if self.scale is not None:
|
413 |
-
self.fb = self.fb.to(input.device)
|
414 |
-
x_mag = torch.matmul(self.fb, x_mag)
|
415 |
-
y_mag = torch.matmul(self.fb, y_mag)
|
416 |
-
|
417 |
-
# normalize scales
|
418 |
-
if self.scale_invariance:
|
419 |
-
alpha = (x_mag * y_mag).sum([-2, -1]) / ((y_mag**2).sum([-2, -1]))
|
420 |
-
y_mag = y_mag * alpha.unsqueeze(-1)
|
421 |
-
|
422 |
-
# compute loss terms
|
423 |
-
sc_mag_loss = self.spectralconv(x_mag, y_mag) if self.w_sc else 0.0
|
424 |
-
log_mag_loss = self.logstft(x_mag, y_mag) if self.w_log_mag else 0.0
|
425 |
-
lin_mag_loss = self.linstft(x_mag, y_mag) if self.w_lin_mag else 0.0
|
426 |
-
phs_loss = torch.nn.functional.mse_loss(x_phs, y_phs) if self.phs_used else 0.0
|
427 |
-
|
428 |
-
# combine loss terms
|
429 |
-
loss = (
|
430 |
-
(self.w_sc * sc_mag_loss)
|
431 |
-
+ (self.w_log_mag * log_mag_loss)
|
432 |
-
+ (self.w_lin_mag * lin_mag_loss)
|
433 |
-
+ (self.w_phs * phs_loss)
|
434 |
-
)
|
435 |
-
|
436 |
-
loss = apply_reduction(loss, reduction=self.reduction)
|
437 |
-
|
438 |
-
if self.output == "loss":
|
439 |
-
return loss
|
440 |
-
elif self.output == "full":
|
441 |
-
return loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss
|
442 |
-
|
443 |
-
class MultiResolutionSTFTLoss(torch.nn.Module):
|
444 |
-
"""Multi resolution STFT loss module.
|
445 |
-
|
446 |
-
See [Yamamoto et al., 2019](https://arxiv.org/abs/1910.11480)
|
447 |
-
|
448 |
-
Args:
|
449 |
-
fft_sizes (list): List of FFT sizes.
|
450 |
-
hop_sizes (list): List of hop sizes.
|
451 |
-
win_lengths (list): List of window lengths.
|
452 |
-
window (str, optional): Window to apply before FFT, options include:
|
453 |
-
'hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window']
|
454 |
-
Default: 'hann_window'
|
455 |
-
w_sc (float, optional): Weight of the spectral convergence loss term. Default: 1.0
|
456 |
-
w_log_mag (float, optional): Weight of the log magnitude loss term. Default: 1.0
|
457 |
-
w_lin_mag (float, optional): Weight of the linear magnitude loss term. Default: 0.0
|
458 |
-
w_phs (float, optional): Weight of the spectral phase loss term. Default: 0.0
|
459 |
-
sample_rate (int, optional): Sample rate. Required when scale = 'mel'. Default: None
|
460 |
-
scale (str, optional): Optional frequency scaling method, options include:
|
461 |
-
['mel', 'chroma']
|
462 |
-
Default: None
|
463 |
-
n_bins (int, optional): Number of mel frequency bins. Required when scale = 'mel'. Default: None.
|
464 |
-
scale_invariance (bool, optional): Perform an optimal scaling of the target. Default: False
|
465 |
-
"""
|
466 |
-
|
467 |
-
def __init__(
|
468 |
-
self,
|
469 |
-
fft_sizes: List[int] = [1024, 2048, 512],
|
470 |
-
hop_sizes: List[int] = [120, 240, 50],
|
471 |
-
win_lengths: List[int] = [600, 1200, 240],
|
472 |
-
window: str = "hann_window",
|
473 |
-
w_sc: float = 1.0,
|
474 |
-
w_log_mag: float = 1.0,
|
475 |
-
w_lin_mag: float = 0.0,
|
476 |
-
w_phs: float = 0.0,
|
477 |
-
sample_rate: float = None,
|
478 |
-
scale: str = None,
|
479 |
-
n_bins: int = None,
|
480 |
-
perceptual_weighting: bool = False,
|
481 |
-
scale_invariance: bool = False,
|
482 |
-
**kwargs,
|
483 |
-
):
|
484 |
-
super().__init__()
|
485 |
-
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) # must define all
|
486 |
-
self.fft_sizes = fft_sizes
|
487 |
-
self.hop_sizes = hop_sizes
|
488 |
-
self.win_lengths = win_lengths
|
489 |
-
|
490 |
-
self.stft_losses = torch.nn.ModuleList()
|
491 |
-
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
492 |
-
self.stft_losses += [
|
493 |
-
STFTLoss(
|
494 |
-
fs,
|
495 |
-
ss,
|
496 |
-
wl,
|
497 |
-
window,
|
498 |
-
w_sc,
|
499 |
-
w_log_mag,
|
500 |
-
w_lin_mag,
|
501 |
-
w_phs,
|
502 |
-
sample_rate,
|
503 |
-
scale,
|
504 |
-
n_bins,
|
505 |
-
perceptual_weighting,
|
506 |
-
scale_invariance,
|
507 |
-
**kwargs,
|
508 |
-
)
|
509 |
-
]
|
510 |
-
|
511 |
-
def forward(self, x, y):
|
512 |
-
mrstft_loss = 0.0
|
513 |
-
sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss = [], [], [], []
|
514 |
-
|
515 |
-
for f in self.stft_losses:
|
516 |
-
if f.output == "full": # extract just first term
|
517 |
-
tmp_loss = f(x, y)
|
518 |
-
mrstft_loss += tmp_loss[0]
|
519 |
-
sc_mag_loss.append(tmp_loss[1])
|
520 |
-
log_mag_loss.append(tmp_loss[2])
|
521 |
-
lin_mag_loss.append(tmp_loss[3])
|
522 |
-
phs_loss.append(tmp_loss[4])
|
523 |
-
else:
|
524 |
-
mrstft_loss += f(x, y)
|
525 |
-
|
526 |
-
mrstft_loss /= len(self.stft_losses)
|
527 |
-
|
528 |
-
if f.output == "loss":
|
529 |
-
return mrstft_loss
|
530 |
-
else:
|
531 |
-
return mrstft_loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss
|
532 |
-
|
533 |
-
|
534 |
-
class SumAndDifferenceSTFTLoss(torch.nn.Module):
|
535 |
-
"""Sum and difference sttereo STFT loss module.
|
536 |
-
|
537 |
-
See [Steinmetz et al., 2020](https://arxiv.org/abs/2010.10291)
|
538 |
-
|
539 |
-
Args:
|
540 |
-
fft_sizes (List[int]): List of FFT sizes.
|
541 |
-
hop_sizes (List[int]): List of hop sizes.
|
542 |
-
win_lengths (List[int]): List of window lengths.
|
543 |
-
window (str, optional): Window function type.
|
544 |
-
w_sum (float, optional): Weight of the sum loss component. Default: 1.0
|
545 |
-
w_diff (float, optional): Weight of the difference loss component. Default: 1.0
|
546 |
-
perceptual_weighting (bool, optional): Apply perceptual A-weighting (Sample rate must be supplied). Default: False
|
547 |
-
mel_stft (bool, optional): Use Multi-resoltuion mel spectrograms. Default: False
|
548 |
-
n_mel_bins (int, optional): Number of mel bins to use when mel_stft = True. Default: 128
|
549 |
-
sample_rate (float, optional): Audio sample rate. Default: None
|
550 |
-
output (str, optional): Format of the loss returned.
|
551 |
-
'loss' : Return only the raw, aggregate loss term.
|
552 |
-
'full' : Return the raw loss, plus intermediate loss terms.
|
553 |
-
Default: 'loss'
|
554 |
-
"""
|
555 |
-
|
556 |
-
def __init__(
|
557 |
-
self,
|
558 |
-
fft_sizes: List[int],
|
559 |
-
hop_sizes: List[int],
|
560 |
-
win_lengths: List[int],
|
561 |
-
window: str = "hann_window",
|
562 |
-
w_sum: float = 1.0,
|
563 |
-
w_diff: float = 1.0,
|
564 |
-
output: str = "loss",
|
565 |
-
**kwargs,
|
566 |
-
):
|
567 |
-
super().__init__()
|
568 |
-
self.sd = SumAndDifference()
|
569 |
-
self.w_sum = w_sum
|
570 |
-
self.w_diff = w_diff
|
571 |
-
self.output = output
|
572 |
-
self.mrstft = MultiResolutionSTFTLoss(
|
573 |
-
fft_sizes,
|
574 |
-
hop_sizes,
|
575 |
-
win_lengths,
|
576 |
-
window,
|
577 |
-
**kwargs,
|
578 |
-
)
|
579 |
-
|
580 |
-
def forward(self, input: torch.Tensor, target: torch.Tensor):
|
581 |
-
"""This loss function assumes batched input of stereo audio in the time domain.
|
582 |
-
|
583 |
-
Args:
|
584 |
-
input (torch.Tensor): Input tensor with shape (batch size, 2, seq_len).
|
585 |
-
target (torch.Tensor): Target tensor with shape (batch size, 2, seq_len).
|
586 |
-
|
587 |
-
Returns:
|
588 |
-
loss (torch.Tensor): Aggreate loss term. Only returned if output='loss'.
|
589 |
-
loss (torch.Tensor), sum_loss (torch.Tensor), diff_loss (torch.Tensor):
|
590 |
-
Aggregate and intermediate loss terms. Only returned if output='full'.
|
591 |
-
"""
|
592 |
-
assert input.shape == target.shape # must have same shape
|
593 |
-
bs, chs, seq_len = input.size()
|
594 |
-
|
595 |
-
# compute sum and difference signals for both
|
596 |
-
input_sum, input_diff = self.sd(input)
|
597 |
-
target_sum, target_diff = self.sd(target)
|
598 |
-
|
599 |
-
# compute error in STFT domain
|
600 |
-
sum_loss = self.mrstft(input_sum, target_sum)
|
601 |
-
diff_loss = self.mrstft(input_diff, target_diff)
|
602 |
-
loss = ((self.w_sum * sum_loss) + (self.w_diff * diff_loss)) / 2
|
603 |
-
|
604 |
-
if self.output == "loss":
|
605 |
-
return loss
|
606 |
-
elif self.output == "full":
|
607 |
-
return loss, sum_loss, diff_loss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/training/losses/losses.py
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
import typing as tp
|
2 |
-
|
3 |
-
from torch.nn import functional as F
|
4 |
-
from torch import nn
|
5 |
-
|
6 |
-
class LossModule(nn.Module):
|
7 |
-
def __init__(self, name: str, weight: float = 1.0):
|
8 |
-
super().__init__()
|
9 |
-
|
10 |
-
self.name = name
|
11 |
-
self.weight = weight
|
12 |
-
|
13 |
-
def forward(self, info, *args, **kwargs):
|
14 |
-
raise NotImplementedError
|
15 |
-
|
16 |
-
class ValueLoss(LossModule):
|
17 |
-
def __init__(self, key: str, name, weight: float = 1.0):
|
18 |
-
super().__init__(name=name, weight=weight)
|
19 |
-
|
20 |
-
self.key = key
|
21 |
-
|
22 |
-
def forward(self, info):
|
23 |
-
return self.weight * info[self.key]
|
24 |
-
|
25 |
-
class L1Loss(LossModule):
|
26 |
-
def __init__(self, key_a: str, key_b: str, weight: float = 1.0, mask_key: str = None, name: str = 'l1_loss'):
|
27 |
-
super().__init__(name=name, weight=weight)
|
28 |
-
|
29 |
-
self.key_a = key_a
|
30 |
-
self.key_b = key_b
|
31 |
-
|
32 |
-
self.mask_key = mask_key
|
33 |
-
|
34 |
-
def forward(self, info):
|
35 |
-
mse_loss = F.l1_loss(info[self.key_a], info[self.key_b], reduction='none')
|
36 |
-
|
37 |
-
if self.mask_key is not None and self.mask_key in info:
|
38 |
-
mse_loss = mse_loss[info[self.mask_key]]
|
39 |
-
|
40 |
-
mse_loss = mse_loss.mean()
|
41 |
-
|
42 |
-
return self.weight * mse_loss
|
43 |
-
|
44 |
-
class MSELoss(LossModule):
|
45 |
-
def __init__(self, key_a: str, key_b: str, weight: float = 1.0, mask_key: str = None, name: str = 'mse_loss'):
|
46 |
-
super().__init__(name=name, weight=weight)
|
47 |
-
|
48 |
-
self.key_a = key_a
|
49 |
-
self.key_b = key_b
|
50 |
-
|
51 |
-
self.mask_key = mask_key
|
52 |
-
|
53 |
-
def forward(self, info):
|
54 |
-
mse_loss = F.mse_loss(info[self.key_a], info[self.key_b], reduction='none')
|
55 |
-
|
56 |
-
if self.mask_key is not None and self.mask_key in info and info[self.mask_key] is not None:
|
57 |
-
mask = info[self.mask_key]
|
58 |
-
|
59 |
-
if mask.ndim == 2 and mse_loss.ndim == 3:
|
60 |
-
mask = mask.unsqueeze(1)
|
61 |
-
|
62 |
-
if mask.shape[1] != mse_loss.shape[1]:
|
63 |
-
mask = mask.repeat(1, mse_loss.shape[1], 1)
|
64 |
-
|
65 |
-
mse_loss = mse_loss[mask]
|
66 |
-
|
67 |
-
mse_loss = mse_loss.mean()
|
68 |
-
|
69 |
-
return self.weight * mse_loss
|
70 |
-
|
71 |
-
class AuralossLoss(LossModule):
|
72 |
-
def __init__(self, auraloss_module, input_key: str, target_key: str, name: str, weight: float = 1):
|
73 |
-
super().__init__(name, weight)
|
74 |
-
|
75 |
-
self.auraloss_module = auraloss_module
|
76 |
-
|
77 |
-
self.input_key = input_key
|
78 |
-
self.target_key = target_key
|
79 |
-
|
80 |
-
def forward(self, info):
|
81 |
-
loss = self.auraloss_module(info[self.input_key], info[self.target_key])
|
82 |
-
|
83 |
-
return self.weight * loss
|
84 |
-
|
85 |
-
class MultiLoss(nn.Module):
|
86 |
-
def __init__(self, losses: tp.List[LossModule]):
|
87 |
-
super().__init__()
|
88 |
-
|
89 |
-
self.losses = nn.ModuleList(losses)
|
90 |
-
|
91 |
-
def forward(self, info):
|
92 |
-
total_loss = 0
|
93 |
-
|
94 |
-
losses = {}
|
95 |
-
|
96 |
-
for loss_module in self.losses:
|
97 |
-
module_loss = loss_module(info)
|
98 |
-
total_loss += module_loss
|
99 |
-
losses[loss_module.name] = module_loss
|
100 |
-
|
101 |
-
return total_loss, losses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/build/lib/stable_audio_tools/training/utils.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import os
|
3 |
-
|
4 |
-
def get_rank():
|
5 |
-
"""Get rank of current process."""
|
6 |
-
|
7 |
-
print(os.environ.keys())
|
8 |
-
|
9 |
-
if "SLURM_PROCID" in os.environ:
|
10 |
-
return int(os.environ["SLURM_PROCID"])
|
11 |
-
|
12 |
-
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
|
13 |
-
return 0
|
14 |
-
|
15 |
-
return torch.distributed.get_rank()
|
16 |
-
|
17 |
-
class InverseLR(torch.optim.lr_scheduler._LRScheduler):
|
18 |
-
"""Implements an inverse decay learning rate schedule with an optional exponential
|
19 |
-
warmup. When last_epoch=-1, sets initial lr as lr.
|
20 |
-
inv_gamma is the number of steps/epochs required for the learning rate to decay to
|
21 |
-
(1 / 2)**power of its original value.
|
22 |
-
Args:
|
23 |
-
optimizer (Optimizer): Wrapped optimizer.
|
24 |
-
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
|
25 |
-
power (float): Exponential factor of learning rate decay. Default: 1.
|
26 |
-
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
27 |
-
Default: 0.
|
28 |
-
final_lr (float): The final learning rate. Default: 0.
|
29 |
-
last_epoch (int): The index of last epoch. Default: -1.
|
30 |
-
verbose (bool): If ``True``, prints a message to stdout for
|
31 |
-
each update. Default: ``False``.
|
32 |
-
"""
|
33 |
-
|
34 |
-
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., final_lr=0.,
|
35 |
-
last_epoch=-1, verbose=False):
|
36 |
-
self.inv_gamma = inv_gamma
|
37 |
-
self.power = power
|
38 |
-
if not 0. <= warmup < 1:
|
39 |
-
raise ValueError('Invalid value for warmup')
|
40 |
-
self.warmup = warmup
|
41 |
-
self.final_lr = final_lr
|
42 |
-
super().__init__(optimizer, last_epoch, verbose)
|
43 |
-
|
44 |
-
def get_lr(self):
|
45 |
-
if not self._get_lr_called_within_step:
|
46 |
-
import warnings
|
47 |
-
warnings.warn("To get the last learning rate computed by the scheduler, "
|
48 |
-
"please use `get_last_lr()`.")
|
49 |
-
|
50 |
-
return self._get_closed_form_lr()
|
51 |
-
|
52 |
-
def _get_closed_form_lr(self):
|
53 |
-
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
54 |
-
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
|
55 |
-
return [warmup * max(self.final_lr, base_lr * lr_mult)
|
56 |
-
for base_lr in self.base_lrs]
|
57 |
-
|
58 |
-
def copy_state_dict(model, state_dict):
|
59 |
-
"""Load state_dict to model, but only for keys that match exactly.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
model (nn.Module): model to load state_dict.
|
63 |
-
state_dict (OrderedDict): state_dict to load.
|
64 |
-
"""
|
65 |
-
model_state_dict = model.state_dict()
|
66 |
-
for key in state_dict:
|
67 |
-
if key in model_state_dict and state_dict[key].shape == model_state_dict[key].shape:
|
68 |
-
if isinstance(state_dict[key], torch.nn.Parameter):
|
69 |
-
# backwards compatibility for serialized parameters
|
70 |
-
state_dict[key] = state_dict[key].data
|
71 |
-
model_state_dict[key] = state_dict[key]
|
72 |
-
|
73 |
-
model.load_state_dict(model_state_dict, strict=False)
|
74 |
-
|
75 |
-
def create_optimizer_from_config(optimizer_config, parameters):
|
76 |
-
"""Create optimizer from config.
|
77 |
-
|
78 |
-
Args:
|
79 |
-
parameters (iterable): parameters to optimize.
|
80 |
-
optimizer_config (dict): optimizer config.
|
81 |
-
|
82 |
-
Returns:
|
83 |
-
torch.optim.Optimizer: optimizer.
|
84 |
-
"""
|
85 |
-
|
86 |
-
optimizer_type = optimizer_config["type"]
|
87 |
-
|
88 |
-
if optimizer_type == "FusedAdam":
|
89 |
-
from deepspeed.ops.adam import FusedAdam
|
90 |
-
optimizer = FusedAdam(parameters, **optimizer_config["config"])
|
91 |
-
else:
|
92 |
-
optimizer_fn = getattr(torch.optim, optimizer_type)
|
93 |
-
optimizer = optimizer_fn(parameters, **optimizer_config["config"])
|
94 |
-
return optimizer
|
95 |
-
|
96 |
-
def create_scheduler_from_config(scheduler_config, optimizer):
|
97 |
-
"""Create scheduler from config.
|
98 |
-
|
99 |
-
Args:
|
100 |
-
scheduler_config (dict): scheduler config.
|
101 |
-
optimizer (torch.optim.Optimizer): optimizer.
|
102 |
-
|
103 |
-
Returns:
|
104 |
-
torch.optim.lr_scheduler._LRScheduler: scheduler.
|
105 |
-
"""
|
106 |
-
if scheduler_config["type"] == "InverseLR":
|
107 |
-
scheduler_fn = InverseLR
|
108 |
-
else:
|
109 |
-
scheduler_fn = getattr(torch.optim.lr_scheduler, scheduler_config["type"])
|
110 |
-
scheduler = scheduler_fn(optimizer, **scheduler_config["config"])
|
111 |
-
return scheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/config_adapter.json
DELETED
@@ -1,124 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"model_type": "diffusion_cond",
|
3 |
-
"sample_size": 2097152,
|
4 |
-
"sample_rate": 44100,
|
5 |
-
"audio_channels": 2,
|
6 |
-
"model": {
|
7 |
-
"pretransform": {
|
8 |
-
"type": "autoencoder",
|
9 |
-
"iterate_batch": true,
|
10 |
-
"config": {
|
11 |
-
"encoder": {
|
12 |
-
"type": "oobleck",
|
13 |
-
"requires_grad": false,
|
14 |
-
"config": {
|
15 |
-
"in_channels": 2,
|
16 |
-
"channels": 128,
|
17 |
-
"c_mults": [1, 2, 4, 8, 16],
|
18 |
-
"strides": [2, 4, 4, 8, 8],
|
19 |
-
"latent_dim": 128,
|
20 |
-
"use_snake": true
|
21 |
-
}
|
22 |
-
},
|
23 |
-
"decoder": {
|
24 |
-
"type": "oobleck",
|
25 |
-
"config": {
|
26 |
-
"out_channels": 2,
|
27 |
-
"channels": 128,
|
28 |
-
"c_mults": [1, 2, 4, 8, 16],
|
29 |
-
"strides": [2, 4, 4, 8, 8],
|
30 |
-
"latent_dim": 64,
|
31 |
-
"use_snake": true,
|
32 |
-
"final_tanh": false
|
33 |
-
}
|
34 |
-
},
|
35 |
-
"bottleneck": {
|
36 |
-
"type": "vae"
|
37 |
-
},
|
38 |
-
"latent_dim": 64,
|
39 |
-
"downsampling_ratio": 2048,
|
40 |
-
"io_channels": 2
|
41 |
-
}
|
42 |
-
},
|
43 |
-
"conditioning": {
|
44 |
-
"configs": [
|
45 |
-
{
|
46 |
-
"id": "prompt",
|
47 |
-
"type": "t5",
|
48 |
-
"config": {
|
49 |
-
"t5_model_name": "t5-base",
|
50 |
-
"max_length": 128
|
51 |
-
}
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"id": "seconds_start",
|
55 |
-
"type": "number",
|
56 |
-
"config": {
|
57 |
-
"min_val": 0,
|
58 |
-
"max_val": 512
|
59 |
-
}
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"id": "seconds_total",
|
63 |
-
"type": "number",
|
64 |
-
"config": {
|
65 |
-
"min_val": 0,
|
66 |
-
"max_val": 512
|
67 |
-
}
|
68 |
-
}
|
69 |
-
],
|
70 |
-
"cond_dim": 768
|
71 |
-
},
|
72 |
-
"diffusion": {
|
73 |
-
"cross_attention_cond_ids": ["prompt", "seconds_start", "seconds_total"],
|
74 |
-
"global_cond_ids": ["seconds_start", "seconds_total"],
|
75 |
-
"type": "dit",
|
76 |
-
"config": {
|
77 |
-
"io_channels": 64,
|
78 |
-
"embed_dim": 1536,
|
79 |
-
"depth": 24,
|
80 |
-
"num_heads": 24,
|
81 |
-
"cond_token_dim": 768,
|
82 |
-
"global_cond_dim": 1536,
|
83 |
-
"project_cond_tokens": false,
|
84 |
-
"transformer_type": "continuous_transformer",
|
85 |
-
"adapter_present": true
|
86 |
-
}
|
87 |
-
},
|
88 |
-
"io_channels": 64
|
89 |
-
},
|
90 |
-
"training": {
|
91 |
-
"use_ema": true,
|
92 |
-
"log_loss_info": false,
|
93 |
-
"optimizer_configs": {
|
94 |
-
"diffusion": {
|
95 |
-
"adapter_present": true,
|
96 |
-
"optimizer": {
|
97 |
-
"type": "AdamW",
|
98 |
-
"config": {
|
99 |
-
"lr": 3e-3,
|
100 |
-
"betas": [0.9, 0.999],
|
101 |
-
"weight_decay": 1e-3
|
102 |
-
}
|
103 |
-
},
|
104 |
-
"scheduler": {
|
105 |
-
"type": "InverseLR",
|
106 |
-
"config": {
|
107 |
-
"inv_gamma": 1000000,
|
108 |
-
"power": 0.5,
|
109 |
-
"warmup": 0.99
|
110 |
-
}
|
111 |
-
}
|
112 |
-
}
|
113 |
-
},
|
114 |
-
"demo": {
|
115 |
-
"demo_every": 15,
|
116 |
-
"demo_steps": 250,
|
117 |
-
"num_demos": 1,
|
118 |
-
"demo_cond": [
|
119 |
-
{"prompt": "Amen break 174 BPM", "seconds_start": 0, "seconds_total": 12}
|
120 |
-
],
|
121 |
-
"demo_cfg_scales": [7]
|
122 |
-
}
|
123 |
-
}
|
124 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stable/convert_json.py
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import sys
|
3 |
-
|
4 |
-
def update_path_in_json(input_file, output_file, new_path):
|
5 |
-
# Read the input JSON file
|
6 |
-
try:
|
7 |
-
with open(input_file, 'r') as infile:
|
8 |
-
data = json.load(infile)
|
9 |
-
except FileNotFoundError:
|
10 |
-
print(f"Input file {input_file} not found.")
|
11 |
-
sys.exit(1)
|
12 |
-
except json.JSONDecodeError:
|
13 |
-
print(f"Error decoding JSON from the input file {input_file}.")
|
14 |
-
sys.exit(1)
|
15 |
-
|
16 |
-
# Update the path
|
17 |
-
try:
|
18 |
-
data['datasets'][0]['path'] = new_path
|
19 |
-
except KeyError as e:
|
20 |
-
print(f"Key error: {e}")
|
21 |
-
sys.exit(1)
|
22 |
-
except IndexError as e:
|
23 |
-
print(f"Index error: {e}")
|
24 |
-
sys.exit(1)
|
25 |
-
|
26 |
-
# Write the updated JSON to the output file
|
27 |
-
try:
|
28 |
-
with open(output_file, 'w') as outfile:
|
29 |
-
json.dump(data, outfile, indent=4)
|
30 |
-
except IOError as e:
|
31 |
-
print(f"Error writing to the output file {output_file}: {e}")
|
32 |
-
sys.exit(1)
|
33 |
-
|
34 |
-
print(f"Path updated successfully in {output_file}")
|
35 |
-
|
36 |
-
|
37 |
-
if __name__ == "__main__":
|
38 |
-
import argparse
|
39 |
-
parser = argparse.ArgumentParser(description='Convert JSON for fine-tuning.')
|
40 |
-
parser.add_argument('--input_json', type=str, help='Name of the dataset', required=True)
|
41 |
-
parser.add_argument('--output_json', type=str, help='Path to the input CSV', required=True)
|
42 |
-
parser.add_argument('--new_path', type=str, help='Path to output JSON', required=True)
|
43 |
-
args = parser.parse_args()
|
44 |
-
update_path_in_json(args.input_json, args.output_json, args.new_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|