""" Dashboard to visualize the progress of the SomosNLP project. by Argilla. This dashboard shows the progress of the SomosNLP project, including the number of annotated and pending records, the top annotators, and the remaining records to be annotated. The data is fetched from the source datasets and updated every 5 minutes. Due to Gradio's limitation on what can be passed as input to their graph methods, the data is fetched outside of the graph methods and stored in global variables. Therefore, a function for each graph-dataset tuple is needed. Moreover, to also avoid circular imports, all the functions must be in the same Python file. This behavior is not ideal, and could be improved knowing how to pass input parameter to graph functions in Gradio. """ import datetime import os from typing import Dict, List, Tuple from uuid import UUID import altair as alt from apscheduler.schedulers.background import BackgroundScheduler import argilla as rg from argilla.feedback import FeedbackDataset from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset import gradio as gr import pandas as pd def get_source_datasets() -> Tuple[ FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset, ]: """ This function returns the source datasets to be showed in the visualization. The datasets names and the workspace name is obtained from the environment variables. Returns: A tuple with the three source datasets """ return ( rg.FeedbackDataset.from_argilla( os.getenv("SOURCE_DATASET_1"), workspace=os.getenv("SOURCE_WORKSPACE") ), rg.FeedbackDataset.from_argilla( os.getenv("SOURCE_DATASET_2"), workspace=os.getenv("SOURCE_WORKSPACE") ), rg.FeedbackDataset.from_argilla( os.getenv("SOURCE_DATASET_3"), workspace=os.getenv("SOURCE_WORKSPACE") ), ) def get_user_annotations_dictionary( datasets: List[FeedbackDataset | RemoteFeedbackDataset], ) -> Dict[str, int]: """ This function returns a dictionary with the username as the key and the number of annotations as the value. All annotationsfrom all datasets are introduced in the same dictionary. Args: datasets: A list with the datasets to be used to obtain the annotations and the annotators. Returns: A dictionary with the username as the key and the number of annotations as the value. """ output = {} for dataset in datasets: for record in dataset: for response in record.responses: if str(response.user_id) not in output.keys(): output[str(response.user_id)] = 1 else: output[str(response.user_id)] += 1 # Changing the name of the keys, from the id to the username for key in list(output.keys()): output[rg.User.from_id(UUID(key)).username] = output.pop(key) return output def donut_chart_1() -> alt.Chart: """ This function returns a donut chart with the number of annotated and pending records, for the first dataset Returns: An altair chart with the donut chart. """ annotated_records = len(dataset1.filter_by(response_status=["submitted"])) pending_records = len(dataset1) - annotated_records source = pd.DataFrame( { "values": [annotated_records, pending_records], "category": ["Annotated", "Pending"], # Add a new column for categories } ) base = alt.Chart(source).encode( theta=alt.Theta("values:Q", stack=True), radius=alt.Radius( "values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20) ), color=alt.Color("category:N", legend=alt.Legend(title="Category")), ) c1 = base.mark_arc(innerRadius=20, stroke="#fff") c2 = base.mark_text(radiusOffset=10).encode(text="values:Q") chart = c1 + c2 return chart def donut_chart_2() -> alt.Chart: """ This function returns a donut chart with the number of annotated and pending records, for the second dataset. Returns: An altair chart with the donut chart. """ annotated_records = len(dataset2.filter_by(response_status=["submitted"])) pending_records = len(dataset2) - annotated_records source = pd.DataFrame( { "values": [annotated_records, pending_records], "category": ["Annotated", "Pending"], # Add a new column for categories } ) base = alt.Chart(source).encode( theta=alt.Theta("values:Q", stack=True), radius=alt.Radius( "values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20) ), color=alt.Color("category:N", legend=alt.Legend(title="Category")), ) c1 = base.mark_arc(innerRadius=20, stroke="#fff") c2 = base.mark_text(radiusOffset=10).encode(text="values:Q") chart = c1 + c2 return chart def donut_chart_3() -> alt.Chart: """ This function returns a donut chart with the number of annotated and pending records, for the third dataset. Returns: An altair chart with the donut chart. """ annotated_records = len(dataset3.filter_by(response_status=["submitted"])) pending_records = len(dataset3) - annotated_records source = pd.DataFrame( { "values": [annotated_records, pending_records], "category": ["Annotated", "Pending"], # Add a new column for categories } ) base = alt.Chart(source).encode( theta=alt.Theta("values:Q", stack=True), radius=alt.Radius( "values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20) ), color=alt.Color("category:N", legend=alt.Legend(title="Category")), ) c1 = base.mark_arc(innerRadius=20, stroke="#fff") c2 = base.mark_text(radiusOffset=10).encode(text="values:Q") chart = c1 + c2 return chart def kpi_chart_submitted_1() -> alt.Chart: """ This function returns a KPI chart with the total amount of records that have been annotated, for the first dataset. Returns: An altair chart with the KPI chart. """ total = len(dataset1.filter_by(response_status=["submitted"])) # Assuming you have a DataFrame with user data, create a sample DataFrame data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]}) # Create Altair chart chart = ( alt.Chart(data) .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue") .encode(text="Value:N") .properties(title="Completados", width=250, height=200) ) return chart def kpi_chart_submitted_2() -> alt.Chart: """ This function returns a KPI chart with the total amount of records that have been annotated, for the second dataset. Returns: An altair chart with the KPI chart. """ total = len(dataset2.filter_by(response_status=["submitted"])) # Assuming you have a DataFrame with user data, create a sample DataFrame data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]}) # Create Altair chart chart = ( alt.Chart(data) .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue") .encode(text="Value:N") .properties(title="Completados", width=250, height=200) ) return chart def kpi_chart_submitted_3() -> alt.Chart: """ This function returns a KPI chart with the total amount of records that have been annotated, for the third dataset. Returns: An altair chart with the KPI chart. """ total = len(dataset3.filter_by(response_status=["submitted"])) # Assuming you have a DataFrame with user data, create a sample DataFrame data = pd.DataFrame({"Category": ["Total completed"], "Value": [total]}) # Create Altair chart chart = ( alt.Chart(data) .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue") .encode(text="Value:N") .properties(title="Completados", width=250, height=200) ) return chart def kpi_chart_remaining_1() -> alt.Chart: """ This function returns a KPI chart with the remaining amount of records to be annotated, for the first dataset. Returns: An altair chart with the KPI chart. """ annotated_records = len(dataset1.filter_by(response_status=["submitted"])) pending_records = len(dataset1) - annotated_records # Assuming you have a DataFrame with user data, create a sample DataFrame data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]}) # Create Altair chart chart = ( alt.Chart(data) .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue") .encode(text="Value:N") .properties(title="Restantes", width=250, height=200) ) return chart def kpi_chart_remaining_2() -> alt.Chart: """ This function returns a KPI chart with the remaining amount of records to be annotated, for the second dataset. Returns: An altair chart with the KPI chart. """ annotated_records = len(dataset2.filter_by(response_status=["submitted"])) pending_records = len(dataset2) - annotated_records # Assuming you have a DataFrame with user data, create a sample DataFrame data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]}) # Create Altair chart chart = ( alt.Chart(data) .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue") .encode(text="Value:N") .properties(title="Restantes", width=250, height=200) ) return chart def kpi_chart_remaining_3() -> alt.Chart: """ This function returns a KPI chart with the remaining amount of records to be annotated, for the third dataset. Returns: An altair chart with the KPI chart. """ annotated_records = len(dataset3.filter_by(response_status=["submitted"])) pending_records = len(dataset3) - annotated_records # Assuming you have a DataFrame with user data, create a sample DataFrame data = pd.DataFrame({"Category": ["Total remaining"], "Value": [pending_records]}) # Create Altair chart chart = ( alt.Chart(data) .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue") .encode(text="Value:N") .properties(title="Restantes", width=250, height=200) ) return chart def render_hub_user_link(hub_id: str) -> str: """ This function formats the username with a link to the user's profile in the Hugging Face Hub. Args: hub_id: The user's id in the Hugging Face Hub. Returns: A string with the username formatted as a link to the user's profile in the Hugging Face Hub. """ link = f"https://huggingface.co./{hub_id}" return f'{hub_id}' def kpi_chart_annotators() -> alt.Chart: """ This function returns a KPI chart with the total amount of annotators. Returns: An altair chart with the KPI chart. """ # Obtain the total amount of annotators total_annotators = len(user_ids_annotations) # Assuming you have a DataFrame with user data, create a sample DataFrame data = pd.DataFrame( {"Category": ["Total Contributors"], "Value": [total_annotators]} ) # Create Altair chart chart = ( alt.Chart(data) .mark_text(fontSize=100, align="center", baseline="middle", color="steelblue") .encode(text="Value:N") .properties(title="Contribuidores Totales", width=250, height=200) ) return chart def obtain_top_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame: """ This function returns the top 50 users with the most annotations. The usernames are formatted as links to the user's profile in the Hugging Face Hub. Args: user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value. Returns: A pandas dataframe with the top 5 users with the most annotations. """ dataframe = pd.DataFrame( user_ids_annotations.items(), columns=["Name", "Submitted Responses"] ) dataframe["Name"] = dataframe["Name"].apply(render_hub_user_link) dataframe = dataframe.sort_values(by="Submitted Responses", ascending=False) # Renaming the df columns to Spanish dataframe.columns = ["Nombre", "Respuestas Enviadas"] return dataframe.head(50) def get_top() -> pd.DataFrame: """ This function returns the top users with the most annotations. The usernames are formatted as links to the user's profile in the Hugging Face Hub. Returns: A pandas dataframe with the top users with the most annotations. """ return obtain_top_users(user_ids_annotations) def fetch_data() -> None: """ This function fetches the data from the source datasets and updates the global variables. """ print(f"Starting to fetch data: {datetime.datetime.now()}") # Load the dataset as global variable to be able to use it in all Gradio graph methods, # as they usually do not allow arguments. global dataset1, dataset2, dataset3, user_ids_annotations dataset1, dataset2, dataset3 = get_source_datasets() user_ids_annotations = get_user_annotations_dictionary( [dataset1, dataset2, dataset3] ) # Print the current date and time print(f"Data fetched: {datetime.datetime.now()}") def main() -> None: # Set the update interval update_interval = 300 # seconds update_interval_charts = 30 # seconds # Connect to the space with rg.init() rg.init( api_url=os.getenv("ARGILLA_API_URL"), api_key=os.getenv("ARGILLA_API_KEY"), extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"}, ) # Initial data fetching fetch_data() # To avoid the orange border for the Gradio elements that are in constant loading css = """ .generating { border: none; } """ with gr.Blocks(css=css, title="LLM Benchmark en Español Dashboard") as demo: # JSS code to force light theme demo.load( None, None, js=""" () => { const params = new URLSearchParams(window.location.search); if (!params.has('__theme')) { params.set('__theme', 'light'); window.location.search = params.toString(); } }""", ) gr.Markdown( """ # 🗣️ SomosNLP LLM Benchmark en Español Dashboard Esta dashboard, desarrollada en Gradio, muestra el progreso de anotación del Hackathon de LLM en Español, de SomosNLP. En este espacio, puedes valorar traducciones realizadas automática del inglés al español. Tus contribuciones y las del resto de anotadores aparecerán en esta visualización. Si quieres contribuir, puedes anotar siguiendo este [enlace](https://huggingface.co./spaces/somosnlp/benchmark-annotation-argilla). """ ) gr.Markdown( f""" ## 🚀 Progreso del dataset {os.getenv("SOURCE_DATASET_1")} El dataset ARC-C, creado por AllenAI, contiene un total de 2585 filas con preguntas de nivel escolar, de múltiples opciones, con el fin de evaluar Large Language Models (LLMs) en tareas de question-answering. """ ) with gr.Row(): plot = gr.Plot(label="Plot") demo.load( kpi_chart_submitted_1, inputs=[], outputs=[plot], ) plot = gr.Plot(label="Plot") demo.load( kpi_chart_remaining_1, inputs=[], outputs=[plot], ) # donut_chart_plotted_1 = gr.Plot(label="Plot") # demo.load( # donut_chart_1, # inputs=[], # outputs=[donut_chart_plotted_1], # ) gr.Markdown( f""" ## 🚀 Progreso del dataset {os.getenv("SOURCE_DATASET_2")} HellaSwag es un conjunto de datos creado por Allen Institute for Artificial Intelligence (AI2) el cual consta de un contexto y de una serie de generaciones como continuación a dicho contexto, que suelen ser tareas de sentido común y fáciles de resolver por humanos. """ ) with gr.Row(): plot = gr.Plot(label="Plot") demo.load( kpi_chart_submitted_2, inputs=[], outputs=[plot], ) plot = gr.Plot(label="Plot") demo.load( kpi_chart_remaining_2, inputs=[], outputs=[plot], ) # donut_chart_plotted_2 = gr.Plot(label="Plot") # demo.load( # donut_chart_2, # inputs=[], # outputs=[donut_chart_plotted_2], # ) gr.Markdown( f""" ## 🚀 Progreso del dataset {os.getenv("SOURCE_DATASET_3")} "Measuring Massive Multitask Language Understanding", abreviado como MMLU, es un conjunto de datos creado por Center for AI Safety que contiene preguntas con múltiples opciones de una gran diversidad de temas, llegando a cubrir hasta 57 temas o tareas distintas. De este modo, este conjunto de datos es utilizado para evaluar Large Language Models (LLMs), de modo que para que uno de estos modelos sea capaz de obtener un mejor resultado, ha de tener un conocimiento extenso y capacidad de resolución de problemas. """ ) with gr.Row(): plot = gr.Plot(label="Plot") demo.load( kpi_chart_submitted_3, inputs=[], outputs=[plot], ) plot = gr.Plot(label="Plot") demo.load( kpi_chart_remaining_3, inputs=[], outputs=[plot], ) # donut_chart_plotted_3 = gr.Plot(label="Plot") # demo.load( # donut_chart_3, # inputs=[], # outputs=[donut_chart_plotted_3], # ) gr.Markdown( """ ## 👾 Hall de la Fama Aquí puedes ver el número de contribuidores y los contribuidores con más contribuciones: """ ) with gr.Row(): plot2 = gr.Plot(label="Plot") demo.load( kpi_chart_annotators, inputs=[], outputs=[plot2], ) top_df_plot = gr.Dataframe( headers=["Name", "Submitted Responses"], datatype=[ "markdown", "number", ], row_count=50, col_count=(2, "fixed"), interactive=False, ) demo.load(get_top, None, [top_df_plot]) # Launch the Gradio interface demo.launch() if __name__ == "__main__": main()