import argparse import itertools import math import os from pathlib import Path from typing import Optional import subprocess import sys from datetime import datetime from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset, concatenate_datasets from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, DataCollatorForLanguageModeling, TrainingArguments, Trainer, GenerationConfig ) from accelerate import FullyShardedDataParallelPlugin, Accelerator from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig from peft import PeftConfig, LoraConfig, get_peft_model, prepare_model_for_kbit_training #import wandb from trl import SFTTrainer from huggingface_hub import login CHAT_ML_TEMPLATE_Mistral_7B_Instruct = """ {% if messages[0]['role'] == 'system' %} {% set loop_messages = messages[1:] %} {% set system_message = messages[0]['content'].strip() + '\n\n' %} {% else %} {% set loop_messages = messages %} {% set system_message = '' %} {% endif %} {{ bos_token }} {% for message in loop_messages %} {% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %} {{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }} {% endif %} {% if loop.index0 == 0 %} {% set content = system_message + message['content'] %} {% else %} {% set content = message['content'] %} {% endif %} {% if message['role'] == 'user' %} {{ '[INST] ' + content.strip() + ' [/INST]' }} {% elif message['role'] == 'assistant' %} {{ ' ' + content.strip() + ' ' + eos_token }} {% endif %} {% endfor %} """ def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--pretrained_model_name_or_path", type=str, default=None, #required=True, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--instance_data_dir", type=str, default=None, #required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default="", help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If not have enough images, additional images will be" " sampled with class_prompt." ), ) parser.add_argument( "--output_dir", type=str, default="", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution" ) parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder") parser.add_argument( "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) parser.add_argument("--num_train_epochs", type=int, default=1) parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--learning_rate", type=float, default=5e-6, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--scale_lr", action="store_true", default=False, help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", ) parser.add_argument( "--lr_scheduler", type=str, default="constant", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument( "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." ) parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) parser.add_argument( "--save_n_steps", type=int, default=1, help=("Save the model every n global_steps"), ) parser.add_argument( "--save_starting_step", type=int, default=1, help=("The step from which it starts saving intermediary checkpoints"), ) parser.add_argument( "--stop_text_encoder_training", type=int, default=1000000, help=("The step at which the text_encoder is no longer trained"), ) parser.add_argument( "--image_captions_filename", action="store_true", help="Get captions from filename", ) parser.add_argument( "--dump_only_text_encoder", action="store_true", default=False, help="Dump only text encoder", ) parser.add_argument( "--train_only_unet", action="store_true", default=False, help="Train only the unet", ) parser.add_argument( "--Session_dir", type=str, default="", help="Current session directory", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank #if args.instance_data_dir is None: # raise ValueError("You must specify a train data directory.") #if args.with_prior_preservation: # if args.class_data_dir is None: # raise ValueError("You must specify a data directory for class images.") # if args.class_prompt is None: # raise ValueError("You must specify prompt for class images.") return args def run_training(args_imported): args_default = parse_args() #args = merge_args(args_default, args_imported) return(args) TOKEN_NAME = "DeepESP/gpt2-spanish-medium" TOKEN_MISTRAL_NAME = "mistralai/Mistral-7B-Instruct-v0.1" SPANISH_MEDICA_LLM_DATASET = "somosnlp/spanish_medica_llm" TOPIC_TYPE_DIAGNOSTIC = 'medical_diagnostic' TOPIC_TYPE_TRATAMIENT = 'medical_topic' FILTER_CRITERIA = [TOPIC_TYPE_DIAGNOSTIC, TOPIC_TYPE_TRATAMIENT] CONTEXT_LENGTH = 256 #Max of tokens MISTRAL_BASE_MODEL_ID = "BioMistral/BioMistral-7B" MICRO_BATCH_SIZE = 16 #32 For other GPU BIGGER THAN T4 BATCH_SIZE = 64 #128 For other GPU BIGGER THAN T4 GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE PROJECT_NAME = "spanish-medica-llm" BASE_MODEL_NAME = "biomistral" run_name = BASE_MODEL_NAME + "-" + PROJECT_NAME output_dir = "./" + run_name HUB_MODEL_ID = 'somosnlp/spanish_medica_llm' MAX_TRAINING_STEPS = int(1500/2) MAX_TRAINING_STEPS = 2 TOKEN_NAME = TOKEN_MISTRAL_NAME def get_chat_format(element): """ Processes a single sample from the alpaca dataset to structure it for chatbot training. This function transforms the dataset sample into a format suitable for training, where each message is categorized by its role in the conversation (system, input, user, assistant). It initializes the conversation with a system message, then conditionally adds an input message, follows with the user's instruction, and finally, the assistant's output based on the provided inputs. Parameters ---------- sample : dict A dictionary representing a single sample from the dataset. It must contain keys corresponding to input and output components of the conversation. Returns ------- dict A modified dictionary with a 'messages' key that contains a list of ordered messages, each annotated with its role in the conversation. """ prompt_template="""A partir del caso clínico que se expone a continuación, tu tarea es la siguiente. Como médico experto, tu tarea es la de diagnosticar al paciente en base al caso clínico. Responde únicamente con el diagnóstico para el paciente de forma concisa. Caso clínico: {caso_clinico} """ # cómo usarlo con un LLM: system_prompt = "Eres un experto en medicina que realiza diagnósticos en base a casos clínicos." messages = [ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt_template.format(caso_clinico=element["raw_text"])}, {"role": "assistant", "content": element["topic"]}, ] element["raw_text"] = messages return element def loadSpanishTokenizer(): """ """ #Load first the mistral used tokenizer tokenizerMistrall = AutoTokenizer.from_pretrained(TOKEN_MISTRAL_NAME) #Load second an spanish specialized tokenizer tokenizer = AutoTokenizer.from_pretrained( TOKEN_NAME, eos_token = tokenizerMistrall.special_tokens_map['eos_token'], bos_token = tokenizerMistrall.special_tokens_map['bos_token'], unk_token = tokenizerMistrall.special_tokens_map['unk_token'] ) tokenizer.chat_template = CHAT_ML_TEMPLATE_Mistral_7B_Instruct return tokenizer def tokenize(element, tokenizer): outputs = tokenizer( element["raw_text"], truncation = True, max_length = CONTEXT_LENGTH, return_overflowing_tokens = True, return_length = True, ) input_batch = [] for length, input_ids in zip(outputs["length"], outputs["input_ids"]): if length == CONTEXT_LENGTH: input_batch.append(input_ids) return {"input_ids": input_batch} def apply_chat_template(example, tokenizer): example['raw_text'] = tokenizer.apply_chat_template(example['raw_text'], tokenize=False) return example def splitDatasetInTestValid(dataset): """ """ if dataset == None or dataset['train'] == None: return dataset elif dataset['test'] == None: return None else: test_eval = dataset['test'].train_test_split(test_size=0.001) eval_dataset = test_eval['train'] test_dataset = test_eval['test'] return (dataset['train'], eval_dataset, test_dataset) def loadSpanishDataset(): spanishMedicaLllmDataset = load_dataset(SPANISH_MEDICA_LLM_DATASET, split="train") spanishMedicaLllmDataset = spanishMedicaLllmDataset.filter(lambda example: example["topic_type"] not in FILTER_CRITERIA) spanishMedicaLllmDataset = spanishMedicaLllmDataset.train_test_split(0.2, seed=203984) return spanishMedicaLllmDataset def loadSpanishDatasetFinnetuning(): spanishMedicaLllmDataset = load_dataset(SPANISH_MEDICA_LLM_DATASET, split="train") spanishMedicaLllmDataset = spanishMedicaLllmDataset.filter(lambda example: example["topic_type"] in FILTER_CRITERIA) return spanishMedicaLllmDataset ##See Jupyter Notebook for change CONTEXT_LENGTH size def applyChatInstructFormat(dataset, filterColumns = ['raw_text', 'topic']): """ Apply instruccion chat_template """ if dataset == None: return dataset else: dataset = dataset.remove_columns([col for col in dataset.features if col not in filterColumns]) return dataset.map( get_chat_format, batched=False, num_proc=4 ) def accelerateConfigModel(): """ Only with GPU support RuntimeError: There are currently no available devices found, must be one of 'XPU', 'CUDA', or 'NPU'. """ fsdp_plugin = FullyShardedDataParallelPlugin( state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False), optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False), ) return Accelerator(fsdp_plugin=fsdp_plugin) def getTokenizedDataset(dataset, tokenizer): if dataset == None or tokenizer == None: return dataset return dataset.map( lambda element : tokenize(element, tokenizer), batched = True, remove_columns = dataset["train"].column_names ) def loadBaseModel(base_model_id): if base_model_id in [ "", None]: return None else: bnb_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_quant_type = "nf4", bnb_4bit_use_double_quant = True, bnb_4bit_compute_dtype = torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( base_model_id, quantization_config = bnb_config ) model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) return model def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) def modelLoraConfigBioMistral(model): """ r is the rank of the low-rank matrix used in the adapters, which thus controls the number of parameters trained. A higher rank will allow for more expressivity, but there is a compute tradeoff. alpha is the scaling factor for the learned weights. The weight matrix is scaled by alpha/r, and thus a higher value for alpha assigns more weight to the LoRA activations. The values used in the QLoRA paper werer=64 and lora_alpha=16, and these are said to generalize well, but we will user=8 and lora_alpha=16 so that we have more emphasis on the new fine-tuned data while also reducing computational complexity. """ if model == None: return model else: config = LoraConfig( r=8, lora_alpha=16, target_modules=[ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head", ], bias="none", lora_dropout=0.05, # Conventional task_type="CAUSAL_LM", ) model = get_peft_model(model, config) print_trainable_parameters(model) accelerator = accelerateConfigModel() # Apply the accelerator. You can comment this out to remove the accelerator. model = accelerator.prepare_model(model) return (model) def getLoraConfiguration(): """ """ return LoraConfig( r=8, lora_alpha=16, target_modules=[ "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj", "lm_head", ], bias="none", lora_dropout=0.05, # Conventional task_type="CAUSAL_LM", ) # A note on training. You can set the max_steps to be high initially, and examine at what step your # model's performance starts to degrade. There is where you'll find a sweet spot for how many steps # to perform. For example, say you start with 1000 steps, and find that at around 500 steps # the model starts overfitting - the validation loss goes up (bad) while the training # loss goes down significantly, meaning the model is learning the training set really well, # but is unable to generalize to new datapoints. Therefore, 500 steps would be your sweet spot, # so you would use the checkpoint-500 model repo in your output dir (biomistral-medqa-finetune) # as your final model in step 6 below. def configAndRunTraining(basemodel, dataset, eval_dataset, tokenizer): if basemodel is None or dataset is None or tokenizer is None: return None else: tokenizer.pad_token = tokenizer.eos_token data_collator_pretrain = DataCollatorForLanguageModeling(tokenizer, mlm = False) training_args = TrainingArguments( output_dir=output_dir, push_to_hub = True, hub_private_repo = False, hub_model_id = HUB_MODEL_ID, warmup_steps = 5, per_device_train_batch_size = MICRO_BATCH_SIZE, per_device_eval_batch_size=1, #gradient_checkpointing=True, gradient_accumulation_steps = GRADIENT_ACCUMULATION_STEPS, max_steps = MAX_TRAINING_STEPS, learning_rate = 2.5e-5, # Want about 10x smaller than the Mistral learning rate logging_steps = 50, optim="paged_adamw_8bit", logging_dir="./logs", # Directory for storing logs save_strategy = "steps", # Save the model checkpoint every logging step save_steps = 50, # Save checkpoints every 50 steps evaluation_strategy = "steps", # Evaluate the model every logging step eval_steps = 50, # Evaluate and save checkpoints every 50 steps do_eval = True, # Perform evaluation at the end of training report_to = None, # Comment this out if you don't want to use weights & baises run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}" , # Name of the W&B run (optional) fp16=True, #Set for GPU T4 for more powerful GPU as G-100 or another change to false and bf16 parameter bf16=False ) trainer = Trainer( model= basemodel, train_dataset = dataset, eval_dataset = eval_dataset, args = training_args, data_collator = data_collator_pretrain ) basemodel.config.use_cache = False # silence the warnings. Please re-enable for inference! trainer.train() trainer.push_to_hub() def configAndRunFineTuning(basemodel, dataset, eval_dataset, tokenizer): if basemodel is None or dataset is None or tokenizer is None: return None else: tokenizer.pad_token = tokenizer.eos_token training_args = TrainingArguments( output_dir=output_dir, push_to_hub = True, hub_private_repo = False, hub_model_id = HUB_MODEL_ID, warmup_steps = 5, per_device_train_batch_size = MICRO_BATCH_SIZE, per_device_eval_batch_size=1, #gradient_checkpointing=True, gradient_accumulation_steps = GRADIENT_ACCUMULATION_STEPS, num_train_epochs = 1, learning_rate = 2.5e-5, # Want about 10x smaller than the Mistral learning rate logging_steps = 5, optim="paged_adamw_8bit", logging_dir="./logs", # Directory for storing logs save_strategy = "steps", # Save the model checkpoint every logging step save_steps = 50, # Save checkpoints every 50 steps evaluation_strategy = "steps", # Evaluate the model every logging step eval_steps = 50, # Evaluate and save checkpoints every 50 steps do_eval = True, # Perform evaluation at the end of training save_total_limit=2, remove_unused_columns = True, report_to = None, # Comment this out if you don't want to use weights & baises run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}" , # Name of the W&B run (optional) fp16=True, #Set for GPU T4 for more powerful GPU as G-100 or another change to false and bf16 parameter bf16=False ) trainer = SFTTrainer( model=basemodel, train_dataset = dataset, eval_dataset = eval_dataset, peft_config = getLoraConfiguration(), dataset_text_field = "raw_text", max_seq_length = 1024, #512 tokenizer = tokenizer, args = training_args, dataset_kwargs={ "add_special_tokens": False, # We template with special tokens "append_concat_token": False, # No need to add additional separator token }, packing=True ) basemodel.config.use_cache = False # silence the warnings. Please re-enable for inference! trainer.train() trainer.push_to_hub() def run_training_process(): #Loggin to Huggin Face login(token = os.environ.get('HG_FACE_TOKEN')) os.environ['WANDB_DISABLED'] = 'true' tokenizer = loadSpanishTokenizer() medicalSpanishDataset = loadSpanishDataset() train_dataset, eval_dataset, test_dataset = splitDatasetInTestValid( getTokenizedDataset( medicalSpanishDataset, tokenizer) ) train_dataset, eval_dataset, test_dataset = splitDatasetInTestValid( medicalSpanishDataset ) base_model = loadBaseModel(MISTRAL_BASE_MODEL_ID) base_model = modelLoraConfigBioMistral(base_model) configAndRunTraining(base_model,train_dataset, eval_dataset, tokenizer) def run_finnetuning_process(): #Loggin to Huggin Face login(token = os.environ.get('HG_FACE_TOKEN')) os.environ['WANDB_DISABLED'] = 'true' tokenizer = loadSpanishTokenizer() medicalSpanishDataset = applyChatInstructFormat( loadSpanishDatasetFinnetuning()) print ( tokenizer.apply_chat_template(medicalSpanishDataset[5]['raw_text'], tokenize=False)) print('----------------------------------------------------------') medicalSpanishDataset = medicalSpanishDataset.map(apply_chat_template, num_proc = os.cpu_count(), fn_kwargs = {'tokenizer':tokenizer}, remove_columns = [col for col in medicalSpanishDataset.features if col not in ['raw_text']], desc = 'Applying chat template' ) medicalSpanishDataset = medicalSpanishDataset.train_test_split(0.2, seed=203984) train_dataset, eval_dataset, test_dataset = splitDatasetInTestValid( medicalSpanishDataset ) base_model = loadBaseModel(HUB_MODEL_ID) print('Dataset in One ') print (train_dataset[5]) configAndRunFineTuning(base_model,train_dataset, eval_dataset, tokenizer) def generate_response(query): max_new_tokens=256 temperature=0.1 top_p=0.75 top_k=40 num_beams=2 #model = loadBaseModel(HUB_MODEL_ID) config = PeftConfig.from_pretrained(HUB_MODEL_ID) model = AutoModelForCausalLM.from_pretrained(HUB_MODEL_ID, return_dict=True, load_in_8bit=True, device_map={"":0}) tokenizer = AutoTokenizer.from_pretrained(HUB_MODEL_ID) #system = f"[INST]\nYou are a helpful coding assistant.[/INST]\n" query = get_chat_format({'raw_text':query, 'topic':''}) prompt = tokenizer.apply_chat_template(query, tokenize=False) print(prompt) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to("cuda") attention_mask = inputs["attention_mask"].to("cuda") generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, attention_mask=attention_mask, generation_config=generation_config, return_dict_in_generate=True, #output_scores=True, max_new_tokens=max_new_tokens, early_stopping=True ) s = generation_output.sequences[0] output = tokenizer.decode(s, skip_special_tokens=True) return output # return output.split("<|assistant|>")[1]