ask2democracy / app.py
jorge-henao's picture
space copied from https://huggingface.co./spaces/jorge-henao/ask2democracycol
c71de7a
raw
history blame
8.49 kB
import time
from about import show_about_ask2democracy
import streamlit as st
from pinecone_quieries import PineconeProposalQueries
from config import Config
from samples import *
queries = PineconeProposalQueries (index_name= Config.index_name,
api_key = Config.es_password,
environment = Config.pinecone_environment,
embedding_dim = Config.embedding_dim,
reader_name_or_path = Config.reader_model_name_or_path,
use_gpu = Config.use_gpu,
OPENAI_key= None)
def search(question, retriever_top_k, reader_top_k, selected_index=None):
filters = {"source_title": selected_index}
query_result = queries.search_by_query(query = question,
retriever_top_k = retriever_top_k,
reader_top_k = reader_top_k,
filters = filters)
result = []
for i in range(0, len(query_result)):
item = query_result[i]
result.append([[i+1], item.answer.replace("\n",""), item.context[:250],
item.meta['title'], item.meta['source_title'],
int(item.meta['page']), item.meta['source_url']])
return result
def search_and_show_results(query:str, retriever_top_k = 5, reader_top_k =3, selected_index=None):
stt = time.time()
results = search(query, retriever_top_k=retriever_top_k,
reader_top_k=reader_top_k, selected_index=selected_index)
ent = time.time()
elapsed_time = round(ent - stt, 2)
st.write(f"**Resultados encontrados para la pregunta** \"{query}\" ({elapsed_time} sec.):")
for i, answer in enumerate(results):
st.subheader(f"{answer[1]}")
doc = answer[2][:250] + "..."
st.markdown(f"{doc}[Lee más aquí]({answer[6]})", unsafe_allow_html=True)
st.caption(f"Fuente: {answer[4]} - Artículo: {answer[3]} - Página: {answer[5]}")
def search_and_generate_answer(question, retriever_top_k, generator_top_k,
openai_api_key, openai_model_name= "text-davinci-003",
temperature = .5, max_tokens = 30, selected_index = None):
filters = {"source_title": selected_index}
query_result = queries.genenerate_answer_OpenAI(query = question,
retriever_top_k = retriever_top_k,
generator_top_k = generator_top_k,
filters = filters, OPENAI_key = openai_api_key,
openai_model_name= openai_model_name,temperature = temperature, max_tokens = max_tokens)
result = []
for i in range(0, len(query_result)):
item = query_result[i]
source_title = item.meta['doc_metas'][0]['source_title']
source_url = item.meta['doc_metas'][0]['source_url']
chapter_titles = [source['title'] for source in item.meta['doc_metas']]
result.append([[i+1], item.answer.replace("\n",""),
source_title, source_url, str(chapter_titles)])
return result
def search_and_show_generative_results(query:str, retriever_top_k = 5, generator_top_k =1 , openai_api_key = None, openai_model_name = "text-davinci-003", temperature = .5, max_tokens = 30, selected_index = None):
# set start time
stt = time.time()
results = search_and_generate_answer(query, retriever_top_k = retriever_top_k,
generator_top_k= generator_top_k,
openai_api_key = openai_api_key,
openai_model_name= openai_model_name,
temperature = temperature, max_tokens = max_tokens,
selected_index = selected_index)
ent = time.time()
elapsed_time = round(ent - stt, 2)
st.write(f"**Respuesta generada para la pregunta** \"{query}\" ({elapsed_time} sec.):")
if results != None:
for i, answer in enumerate(results):
# answer starts with header
st.subheader(f"{answer[1]}")
st.caption(f"Fuentes: {answer[2]} - {answer[4]}")
st.markdown(f"[Lee más aquí]({answer[3]})")
indexes = [{"title": "Propuesta reforma a la salud 13 de febrero de 2023", "name": "Reforma de la salud 13 Febrero 2023", "samples": samples_reforma_salud},
{"title": "Propuesta reforma pensional marzo 22 de 2023", "name": "Reforma pensional Marzo 2023", "samples": samples_reforma_pensional},
{"title": "Hallazgos de la comisión de la verdad", "name": "Hallazgos y recomendaciones - 28 de Junio 2022", "samples": samples_hallazgos_paz}
]
index_titles = [item["title"] for item in indexes]
def get_selected_index_by_title(title):
for item in indexes:
if item["title"] == title:
return item["name"]
return None
def get_samples_for_index(title):
for item in indexes:
if item["title"] == title:
return item["samples"]
return None
def main():
st.title("Ask2Democracy 🇨🇴")
st.markdown("""
<div align="right">
Creado por Jorge Henao 🇨🇴 <a href="https://twitter.com/jhenaotw" target='_blank'>Twitter</a> <a href="https://www.linkedin.com/in/henaojorge" target='_blank'>LinkedIn</a> <a href="https://linktr.ee/jorgehenao" target='_blank'>Linktree</a>
</div>""", unsafe_allow_html=True)
# session_state = st.session_state
# if "api_key" not in session_state:
# session_state.api_key = ""
with st.form("my_form"):
st.sidebar.title("Configuración de búsqueda")
with st.sidebar.expander("Parámetros de recuperación", expanded= True):
index = st.selectbox("Selecciona el documento que deseas explorar", index_titles)
top_k_retriever = st.slider("Retriever Top K", 1, 10, 5)
top_k_reader = st.slider("Reader Top K", 1, 10, 3)
with st.sidebar.expander("Configuración OpenAI"):
openai_api_key = st.text_input("API Key", type="password", placeholder="Copia aquí tu OpenAI API key (no será guardada)",
help="puedes obtener tu api key de OpenAI en https://platform.openai.com/account/api-keys.")
openai_api_model = st.text_input("Modelo", value= "text-davinci-003")
openai_api_temp = st.slider("Temperatura", 0.1, 1.0, 0.5, step=0.1)
openai_api_max_tokens = st.slider("Max tokens", 10, 100, 60, step=10)
# if openai_api_key:
# session_state.password = openai_api_key
sample_questions = get_samples_for_index(index).splitlines()
query = st.text_area("",placeholder="Escribe aquí tu pregunta, cuanto más contexto le des, mejor serán las respuestas")
with st.expander("Algunas preguntas de ejemplo", expanded= False):
for sample in sample_questions:
st.markdown(f"- {sample}")
submited = st.form_submit_button("Buscar")
if submited:
selected_index = get_selected_index_by_title(index)
if openai_api_key:
with st.expander("", expanded= True):
search_and_show_generative_results(query = query,retriever_top_k= top_k_retriever,
generator_top_k= 1, openai_api_key = openai_api_key,
openai_model_name = openai_api_model,
temperature= openai_api_temp,
max_tokens= openai_api_max_tokens,
selected_index = selected_index)
with st.expander("", expanded= True):
search_and_show_results(query, retriever_top_k=top_k_retriever,
reader_top_k=top_k_reader,
selected_index=selected_index)
else:
show_about_ask2democracy()
if __name__ == "__main__":
main()