Spaces:
Runtime error
Runtime error
import time | |
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM | |
import gradio as gr | |
import speech_recognition as sr | |
from math import log2, pow | |
import os | |
#from scipy.fftpack import fft | |
import gc | |
peft_model_id="hackathon-somos-nlp-2023/SalpiBloomZ_15949_input_512-1b7" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
model2 = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, | |
load_in_8bit=True, | |
# load_in_8bit_fp32_cpu_offload=True, | |
device_map='auto') | |
tokenizer2 = AutoTokenizer.from_pretrained(peft_model_id) | |
model2 = PeftModel.from_pretrained(model2, peft_model_id) | |
Problema_tarjetaCredito= os.path.abspath("Problema_tarjetaCredito.ogg") | |
list_audios= [[Problema_tarjetaCredito]] | |
def gen_conversation(text,max_new_tokens=100): | |
text = "<SN>instruction: " + text + "\n " | |
batch = tokenizer2(text, return_tensors='pt') | |
batch = {k: v.to('cuda') for k, v in batch.items()} | |
with torch.cuda.amp.autocast(): | |
output_tokens = model2.generate(**batch, | |
max_new_tokens=max_new_tokens, | |
eos_token_id= tokenizer2.eos_token_id, | |
pad_token_id= tokenizer2.pad_token_id, | |
bos_token_id= tokenizer2.bos_token_id, | |
early_stopping = True, | |
no_repeat_ngram_size=2, | |
repetition_penalty=1.2, | |
temperature=.69, | |
num_beams=3 | |
) | |
gc.collect() | |
torch.cuda.memory_summary(device=None, abbreviated=False) | |
return tokenizer2.decode(output_tokens[0], skip_special_tokens=True).split("\n")[-1].replace("output:","") | |
conversacion = "" | |
description=""" | |
Este proyecto nace de la idea de construir agentes virtuales especializados en temas académicos o nichos de negocio. | |
Para esto fueron creados dos dataset principales, uno basado en habilidades blandas y otro basado en conversaciones empresariales donde un agente humano atiende a un cliente de la empresa en cuestión. | |
Para ejecutar esta tarea, se han empleado múltiples LLMs, entre ellos: | |
- Alpaca native: https://huggingface.co./hackathon-somos-nlp-2023/salsapaca-native | |
- Bertin: https://huggingface.co./hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca | |
- Bloom: https://huggingface.co./hackathon-somos-nlp-2023/SalpiBloom-1b1 | |
- Bloomz: https://huggingface.co./hackathon-somos-nlp-2023/SalpiBloomZ_15949_input_512-1b7 | |
- Dolly: https://huggingface.co./hackathon-somos-nlp-2023/dolly-ArepacaV1 | |
- Cerebras: https://huggingface.co./hackathon-somos-nlp-2023/Cerebras-Cabritax-softskills-espaGPT-1.3B | |
Teniendo como mejor resultado el modelo basado en BloomZ, el cual es el prensentado en esta demo. | |
La demo cuenta con dos tipos de inputs, mediante audio y mediante texto. | |
Esto se hace con la idea de reflejar el hecho de que estos agentes virtuales pueden funcionar tanto para chatbots como para voicebots. | |
Con esto en mano, la empresa o institución que tenga acceso a esta tecnología, podría obtener un agente virtual con el conocimiento necesario para atender una conversación con el usuario final. | |
""" | |
def speech_to_text(audio_file, texto_adicional): | |
global conversacion | |
if audio_file is not None: | |
# Lógica para entrada de audio | |
r = sr.Recognizer() | |
audio_data = sr.AudioFile(audio_file) | |
with audio_data as source: | |
audio = r.record(source) | |
text_enrada="" | |
texto_generado = r.recognize_google(audio, language="es-ES") | |
texto_generado= f"[|Audio a texto|]:{texto_generado}\n" + "<br>[AGENTE]:"+gen_conversation(texto_generado,max_new_tokens=500) | |
texto_generado = "<div style='color: #66b3ff;'>" + texto_generado + "</div><br>" | |
else: | |
texto_generado= f"[|Solo texto|]:{texto_adicional}\n" + "<br>[AGENTE]:"+gen_conversation(texto_adicional,max_new_tokens=500) | |
texto_generado = "<div style='color: #66b3ff;'> " + texto_generado + "</div><br>" | |
conversacion += texto_generado | |
return conversacion | |
iface = gr.Interface( | |
fn=speech_to_text, | |
inputs=[gr.inputs.Audio(label="Voz", type="filepath"), gr.inputs.Textbox(label="Texto adicional")], | |
outputs=gr.outputs.HTML(label=["chatbot","state"]), | |
title="Chat bot para empresas.", | |
description=description, #"Este modelo convierte la entrada de voz o texto y hace inferencia", | |
examples=list_audios, | |
theme="default", | |
layout="vertical", | |
allow_flagging=False, | |
flagging_dir=None, | |
server_name=None, | |
server_port=None, | |
live=False, | |
capture_session=False | |
) | |
iface.launch() | |