File size: 805 Bytes
713e80d
0e5871d
713e80d
 
347a04f
 
 
0e5871d
 
713e80d
0e5871d
3326022
0e5871d
 
 
 
 
 
3326022
0e5871d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
from transformers import pipeline



def classify_sentiment(audio, model):
  pipe = pipeline("audio-classification", model=model)
  sentiment_classifier = pipe(audio)
  return sentiment_classifier


input_audio = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown(["DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v11", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"], label="Model Name")]
label = gr.outputs.Label(num_top_classes=5)

gr.Interface(
    fn = classify_sentiment,
    inputs = input_audio,
    outputs = label,
    examples=[["test1.wav", "DrishtiSharma/wav2vec2-base-finetuned-sentiment-mesd-v11"], ["test2.wav", "hackathon-pln-es/wav2vec2-base-finetuned-sentiment-mesd"]],
    theme="grass").launch()