|
from typing import Tuple
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
from modules.commons import sequence_mask
|
|
|
|
|
|
class InterpolateRegulator(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
sampling_ratios: Tuple,
|
|
is_discrete: bool = False,
|
|
codebook_size: int = 1024,
|
|
out_channels: int = None,
|
|
groups: int = 1,
|
|
token_dropout_prob: float = 0.5,
|
|
token_dropout_range: float = 0.5,
|
|
n_codebooks: int = 1,
|
|
quantizer_dropout: float = 0.0,
|
|
f0_condition: bool = False,
|
|
n_f0_bins: int = 512,
|
|
):
|
|
super().__init__()
|
|
self.sampling_ratios = sampling_ratios
|
|
out_channels = out_channels or channels
|
|
model = nn.ModuleList([])
|
|
if len(sampling_ratios) > 0:
|
|
for _ in sampling_ratios:
|
|
module = nn.Conv1d(channels, channels, 3, 1, 1)
|
|
norm = nn.GroupNorm(groups, channels)
|
|
act = nn.Mish()
|
|
model.extend([module, norm, act])
|
|
model.append(
|
|
nn.Conv1d(channels, out_channels, 1, 1)
|
|
)
|
|
self.model = nn.Sequential(*model)
|
|
self.embedding = nn.Embedding(codebook_size, channels)
|
|
self.is_discrete = is_discrete
|
|
|
|
self.mask_token = nn.Parameter(torch.zeros(1, channels))
|
|
|
|
self.n_codebooks = n_codebooks
|
|
if n_codebooks > 1:
|
|
self.extra_codebooks = nn.ModuleList([
|
|
nn.Embedding(codebook_size, channels) for _ in range(n_codebooks - 1)
|
|
])
|
|
self.token_dropout_prob = token_dropout_prob
|
|
self.token_dropout_range = token_dropout_range
|
|
self.quantizer_dropout = quantizer_dropout
|
|
|
|
if f0_condition:
|
|
self.f0_embedding = nn.Embedding(n_f0_bins, channels)
|
|
self.f0_condition = f0_condition
|
|
self.n_f0_bins = n_f0_bins
|
|
self.f0_bins = torch.arange(2, 1024, 1024 // n_f0_bins)
|
|
self.f0_mask = nn.Parameter(torch.zeros(1, channels))
|
|
else:
|
|
self.f0_condition = False
|
|
|
|
def forward(self, x, ylens=None, n_quantizers=None, f0=None):
|
|
|
|
if self.training:
|
|
n_quantizers = torch.ones((x.shape[0],)) * self.n_codebooks
|
|
dropout = torch.randint(1, self.n_codebooks + 1, (x.shape[0],))
|
|
n_dropout = int(x.shape[0] * self.quantizer_dropout)
|
|
n_quantizers[:n_dropout] = dropout[:n_dropout]
|
|
n_quantizers = n_quantizers.to(x.device)
|
|
|
|
else:
|
|
n_quantizers = torch.ones((x.shape[0],), device=x.device) * (self.n_codebooks if n_quantizers is None else n_quantizers)
|
|
if self.is_discrete:
|
|
if self.n_codebooks > 1:
|
|
assert len(x.size()) == 3
|
|
x_emb = self.embedding(x[:, 0])
|
|
for i, emb in enumerate(self.extra_codebooks):
|
|
x_emb = x_emb + (n_quantizers > i+1)[..., None, None] * emb(x[:, i+1])
|
|
x = x_emb
|
|
elif self.n_codebooks == 1:
|
|
if len(x.size()) == 2:
|
|
x = self.embedding(x)
|
|
else:
|
|
x = self.embedding(x[:, 0])
|
|
|
|
mask = sequence_mask(ylens).unsqueeze(-1)
|
|
x = F.interpolate(x.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
|
if self.f0_condition:
|
|
quantized_f0 = torch.bucketize(f0, self.f0_bins.to(f0.device))
|
|
drop_f0 = torch.rand(quantized_f0.size(0)).to(f0.device) < self.quantizer_dropout
|
|
f0_emb = self.f0_embedding(quantized_f0)
|
|
f0_emb[drop_f0] = self.f0_mask
|
|
f0_emb = F.interpolate(f0_emb.transpose(1, 2).contiguous(), size=ylens.max(), mode='nearest')
|
|
x = x + f0_emb
|
|
out = self.model(x).transpose(1, 2).contiguous()
|
|
olens = ylens
|
|
return out * mask, olens
|
|
|