File size: 6,433 Bytes
dba2b44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4902774
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import pandas as pd
import pickle

import gradio as gr

import torch

import math

from transformers import AutoTokenizer, AutoModel

import transformers

import re

mlp = pickle.load(open("MLP_over_embeddings.pickle", "rb"))

tokenizer = AutoTokenizer.from_pretrained("nlpaueb/sec-bert-num")
model = AutoModel.from_pretrained('nlpaueb/sec-bert-num')

"""# Input here"""

def convert_actual_to_num(text, number, offset):
  length = len(str(number))
  offset = int(offset)
  new_text= text[:offset] + " [NUM] " + text[offset+length:]
  return new_text

def num_detector_highlighter_adv(text):
  num_posn = []
  posn = -1
  num = ""
  text = text + "  "
  others = ""
  for i in range(len(text)-2):
      if (text[i].isdigit() and text[i+1].isdigit()) or (text[i].isdigit() and text[i+1]=="." and text[i+2].isdigit()):
        num = num + str(text[i])
        if posn == -1:
          posn = i
        if others!="":
          num_posn.append((others,""))
          others = ""
      elif (text[i].isdigit() and text[i+1].isdigit()==False and text[i+1]!=".") or (text[i].isdigit() and text[i+1]=="." and text[i].isdigit() and text[i+2].isdigit()==False):
        num = num + str(text[i])
        if len(num)==1:
          posn = i
        if others!="":
          num_posn.append((others,""))
          others = ""  
        num_posn.append((str(num), "@POSITION " + str(posn)))
        num = ""
        posn = -1
      elif text[i] == ".":
        if text[i+1].isdigit():
          num = num + str(text[i])
        else:
          others = others + str(text[i])
      elif text[i]!=' ':
        others = others + str(text[i])
      elif text[i]==" ":
         if others!="" and others!=" ":
          num_posn.append((others,""))
          others = ""
  if others!="":
    num_posn.append((others,""))
  #print(num_posn)
  return num_posn

def exnum_evaluator(df):
  df['preprocessed_text'] = df.apply(lambda x: convert_actual_to_num(x.text, x.number, x.position), axis = 1)
  df['number_processed'] = df['number'].apply(lambda x: str(x)[0:str(x).index(".")+2] if "." in str(x) else str(x))
  #preprocessed_text = convert_actual_to_num(raw_text,number,offset)
  all_preds = []
  for preprocessed_text in df["preprocessed_text"].values:
    tokenized_text = tokenizer.tokenize(preprocessed_text)

    indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
    index = tokenized_text.index('[NUM]')
    tokens_tensor = torch.tensor([indexed_tokens])

    model.eval()
    with torch.no_grad():
      last_hidden_states = model(tokens_tensor)[0] 

    embedding_of_num = last_hidden_states[:,index,:]
    embedding_of_num_use = list(embedding_of_num[0].cpu().detach().numpy())
    pred = mlp.predict([embedding_of_num_use])[0]
    all_preds.append(pred)
  df['pred'] = all_preds
  df['calculated_magnitude'] = df['number_processed'].apply(lambda x : min(6,int(math.log10(float(x)))+1)) # restric upto 2 dp in x if decimal
  df["prediction"] =  np.where((df['calculated_magnitude'] != df['pred']), "Exaggerated", "Non-Exaggerated") #df.apply(lambda x : "Exaggerated" if x.calculated_magnitude!=x.prediction else "Non-Exaggerated", axis=1)
  return df[["number", "position", "prediction"]]#, "text", "preprocessed_text",'number_processed', "pred", "calculated_magnitude"]]

def change_checkbox_group(text2):
  num_posn_inp = [(num, posn) for (num,posn) in eval(text2) if posn!=""]
  num_posn_dislay = [str(num) + " " + str(posn) for (num,posn) in num_posn_inp]
  return gr.CheckboxGroup.update(choices = num_posn_dislay, label="Numerals", visible=True, value=num_posn_dislay)

def combined_fns(text, text2, choices=[]):
  num_posn_inp =  [(num, posn) for (num,posn) in eval(text2) if posn!=""]#[(num, posn) for (num,posn) in num_detector_highlighter_adv(text) if posn!=""]
  #num_posn_dislay = [str(num) + " " + str(posn) for (num,posn) in num_posn]
  df = pd.DataFrame({"text": [text]*len(num_posn_inp), "number" : [i[0] for i in num_posn_inp], "position" : [i[1].replace("@POSITION ", "") for i in num_posn_inp]})
  df['num_position'] = [str(num) + " " + str(posn) for (num,posn) in num_posn_inp]
  if len(choices)>0:
    df = df[df['num_position'].isin(choices)]
  return exnum_evaluator(df)

#examples
def set_example_text(example_text):
    return gr.Textbox.update(value=example_text[0])

demo = gr.Blocks(theme=gr.themes.Soft())

with demo:
    gr.Markdown("# **Financial Exaggerated Numeral ClassifiEr (FENCE)**")
    with gr.Row():
      with gr.Column():
        text = gr.components.Textbox(label="Enter financial text here", lines=2, placeholder="Enter Financial Text here...")
        b1 = gr.Button("Get numerals present in the entered text")
        b1.click(num_detector_highlighter_adv, inputs = text, outputs = gr.HighlightedText(label='Numerals present in the text'))
        text2 = gr.components.Textbox(visible=False)
        b1.click(num_detector_highlighter_adv, inputs = text, outputs =text2)
        with gr.Row():
          with gr.Tabs():
            with gr.TabItem("All numerals"):
              b2 = gr.Button("Predict for all numerals")
              b2.click(combined_fns, inputs = [text, text2], outputs = gr.DataFrame())
            with gr.TabItem("Specific numerals"):
              b3 = gr.Button("Get option to select numerals")
              num_posn_inp_ckbx = gr.CheckboxGroup(choices = [], interactive=True, label='Specific Numerals')
              b3.click(change_checkbox_group, inputs=text2, outputs=num_posn_inp_ckbx)
              b4 = gr.Button("Predict for specific numerals")
              b4.click(combined_fns, inputs = [text, text2, num_posn_inp_ckbx], outputs = gr.DataFrame())
        example_text = gr.Dataset(components=[text], samples=[["Get 30% off Gap denim whilst recycling your old denim for communities in need"], ["	Matthew Perry puts Malibu mansion on the market for $13.5 million"], ["Anton Art Center in Mt. Clemens hosts 19th Annual ArtParty Fundraiser - Twilight in the Tropics"], ["Black Friday Sales! - Vegas hotel packages 50% savings from Southwest Vacations"]])
        example_text.click(fn=set_example_text,
                             inputs=example_text,
                             outputs=example_text.components)
        gr.Markdown("<sub><sup>How to use? [link](https://github.com/sohomghosh/FENCE_Financial_Exaggerated_Numeral_ClassifiEr/blob/main/README.md), Warning: User discretion is advised.</sup></sub>")
demo.launch()