use a better sample image
Browse files- api_test.py +3 -3
api_test.py
CHANGED
@@ -7,6 +7,8 @@ import torch
|
|
7 |
from api_helper import preprocess_image, encode_numpy_array
|
8 |
clip_image_size = 224
|
9 |
num_steps = 1000
|
|
|
|
|
10 |
|
11 |
client = Client("http://127.0.0.1:7860/")
|
12 |
|
@@ -21,7 +23,7 @@ def test_text():
|
|
21 |
|
22 |
def test_image():
|
23 |
result = client.predict(
|
24 |
-
|
25 |
api_name="/image_to_embeddings"
|
26 |
)
|
27 |
return(result)
|
@@ -55,7 +57,6 @@ print("Number of predictions per second for image: ", 1 / average_time_seconds)
|
|
55 |
|
56 |
|
57 |
|
58 |
-
test_image_url = "https://raw.githubusercontent.com/gradio-app/gradio/main/test/test_files/bus.png"
|
59 |
# download image from url
|
60 |
import requests
|
61 |
from PIL import Image
|
@@ -66,7 +67,6 @@ input_image = input_image.convert('RGB')
|
|
66 |
# convert image to numpy array
|
67 |
input_image = np.array(input_image)
|
68 |
|
69 |
-
|
70 |
if input_image.shape[0] > clip_image_size or input_image.shape[1] > clip_image_size:
|
71 |
input_image = preprocess_image(input_image, clip_image_size)
|
72 |
payload = encode_numpy_array(input_image)
|
|
|
7 |
from api_helper import preprocess_image, encode_numpy_array
|
8 |
clip_image_size = 224
|
9 |
num_steps = 1000
|
10 |
+
test_image_url = "https://static.wixstatic.com/media/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg/v1/fill/w_454,h_333,fp_0.50_0.50,q_90/4d6b49_42b9435ce1104008b1b5f7a3c9bfcd69~mv2.jpg"
|
11 |
+
|
12 |
|
13 |
client = Client("http://127.0.0.1:7860/")
|
14 |
|
|
|
23 |
|
24 |
def test_image():
|
25 |
result = client.predict(
|
26 |
+
test_image_url, # str representing filepath or URL to image in 'Image Prompt' Image component
|
27 |
api_name="/image_to_embeddings"
|
28 |
)
|
29 |
return(result)
|
|
|
57 |
|
58 |
|
59 |
|
|
|
60 |
# download image from url
|
61 |
import requests
|
62 |
from PIL import Image
|
|
|
67 |
# convert image to numpy array
|
68 |
input_image = np.array(input_image)
|
69 |
|
|
|
70 |
if input_image.shape[0] > clip_image_size or input_image.shape[1] > clip_image_size:
|
71 |
input_image = preprocess_image(input_image, clip_image_size)
|
72 |
payload = encode_numpy_array(input_image)
|