Spaces:
Runtime error
Runtime error
File size: 13,955 Bytes
149eeaf ad67495 9ed41df 149eeaf 2bb91de 149eeaf 09ede70 ad67495 149eeaf ad67495 9ed41df ad67495 149eeaf ad67495 361f9d4 ad67495 361f9d4 28b5e08 d91a673 361f9d4 e6bce41 361f9d4 2bb91de ad67495 361f9d4 98ec0ec 5ea3bc3 3e4f32c 361f9d4 3e4f32c cf5e7f4 361f9d4 cf5e7f4 ad67495 361f9d4 ad67495 149eeaf 5a17040 c490c32 5a17040 c490c32 5a17040 c490c32 149eeaf c490c32 ad67495 361f9d4 ad67495 9ed41df ad67495 9ed41df 98ec0ec 6130167 795c382 6130167 e6bce41 149eeaf 28b5e08 149eeaf ad67495 98ec0ec 149eeaf 98ec0ec b6ba8eb 98ec0ec 5ea3bc3 98ec0ec 5a17040 6130167 5a17040 c490c32 6130167 795c382 c490c32 e6bce41 2bb91de 795c382 e6bce41 149eeaf 795c382 82ab66c 795c382 2bb91de e6bce41 795c382 149eeaf 6130167 361f9d4 6130167 149eeaf 6130167 5a17040 6130167 5a17040 149eeaf 5a17040 c490c32 6130167 2bb91de cf5e7f4 aec6f97 cf5e7f4 795c382 cf5e7f4 28b5e08 cf5e7f4 ad67495 361f9d4 ad67495 09ede70 88fcdcc 09ede70 ad67495 09ede70 c490c32 ad67495 149eeaf ad67495 149eeaf bcea2ea ad67495 dc249ac 149eeaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import json
import ray
import time
import asyncio
import os
from clip_transform import CLIPTransform
from environment_state_actor import EnvironmentStateActor, EnvironmentState
from respond_to_prompt_async import RespondToPromptAsync
import asyncio
import subprocess
class CharlesActor:
def __init__(self):
self._needs_init = True
self._charles_actor_debug_output = ""
self._environment_state:EnvironmentState = EnvironmentState(episode=0, step=0) # Initialize as EnvironmentState
self._state = "Initializing"
self._clip_transform = CLIPTransform()
def get_environment_state(self)->EnvironmentState:
return self._environment_state
def set_state(self, state, skip_print=False):
self._state = state
if not skip_print:
print(state)
# check if self._app_interface_actor exists
if hasattr(self, '_app_interface_actor'):
self._app_interface_actor.set_state.remote(self._state)
async def _initalize_resources(self):
# Initialize resources
self.set_state("001 - creating AppInterfaceActor")
from app_interface_actor import AppInterfaceActor
self._app_interface_actor = AppInterfaceActor.get_singleton()
self._audio_output_queue = await self._app_interface_actor.get_audio_output_queue.remote()
self.set_state("002 - creating EnvironmentStateActor")
self._environment_state_actor = EnvironmentStateActor.remote()
self.set_state("003 - creating PromptManager")
from prompt_manager import PromptManager
self._prompt_manager = PromptManager()
self.set_state("004 - creating RespondToPromptAsync")
self._respond_to_prompt = None
self._respond_to_prompt_task = None
self.set_state("005 - create SpeechToTextVoskActor")
from speech_to_text_vosk_actor import SpeechToTextVoskActor
self._speech_to_text_actor = SpeechToTextVoskActor.remote("small")
# self._speech_to_text_actor = SpeechToTextVoskActor.remote("big")
self.set_state("006 - create Prototypes")
from prototypes import Prototypes
self._prototypes = Prototypes()
self.set_state("007 - create animator")
from charles_animator import CharlesAnimator
self._animator = CharlesAnimator()
self._needs_init = True
self.set_state("010 - Initialized")
async def start(self):
if self._needs_init:
await self._initalize_resources()
debug_output_history = []
async def render_debug_output(list_of_strings):
table_content = "##### Chat history\n"
for item in reversed(list_of_strings):
# table_content += f"\n```markdown\n{item}\n```\n"
table_content += f"\n{item}\n"
self._charles_actor_debug_output = table_content
await self._app_interface_actor.set_debug_output.remote(self._charles_actor_debug_output)
async def add_debug_output(output):
debug_output_history.append(output)
if len(debug_output_history) > 10:
debug_output_history.pop(0)
await render_debug_output(debug_output_history)
self.set_state("Waiting for input")
total_video_frames = 0
skipped_video_frames = 0
total_audio_frames = 0
loops = 0
start_time = time.time()
vector_debug = "--n/a--"
process_speech_to_text_future = []
current_responses = []
speech_chunks_per_response = []
human_preview_text = ""
robot_preview_text = ""
additional_prompt = None
previous_prompt = ""
is_talking = False
has_spoken_for_this_prompt = False
while True:
env_state = await self._environment_state_actor.begin_next_step.remote()
self._environment_state = env_state
audio_frames = await self._app_interface_actor.dequeue_audio_input_frames_async.remote()
video_frames = await self._app_interface_actor.dequeue_video_input_frames_async.remote()
if len(audio_frames) > 0:
total_audio_frames += len(audio_frames)
# Concatenate all audio frames into a single buffer
audio_buffer = b"".join([buffer.tobytes() for buffer in audio_frames])
future = self._speech_to_text_actor.process_speech.remote(audio_buffer)
process_speech_to_text_future.append(future)
# audio_frames_task = None
if len(video_frames) > 0:
vector_debug = f"found {len(video_frames)} video frames"
total_video_frames += 1
skipped_video_frames += (len(video_frames) -1)
image_as_array = video_frames[-1]
image_vector = self._clip_transform.image_to_embeddings(image_as_array)
image_vector = image_vector[0]
distances, closest_item_key, distance_debug_str = self._prototypes.get_distances(image_vector)
vector_debug = f"{closest_item_key} {distance_debug_str}"
if len(process_speech_to_text_future) > 0:
ready, _ = ray.wait([process_speech_to_text_future[0]], timeout=0)
if ready:
prompt, speaker_finished, raw_json = await process_speech_to_text_future[0]
del process_speech_to_text_future[0]
prompts_to_ignore = ["um", "uh", "ah", "huh", "hmm", "the", "but", "by", "just", "i'm"]
if speaker_finished and len(prompt) > 0 and prompt not in prompts_to_ignore:
print(f"Prompt: {prompt}")
line = ""
for i, response in enumerate(current_responses):
line += "π€ " if len(line) == 0 else ""
# line += f"{response} [{speech_chunks_per_response[i]}] \n"
line += f"[{speech_chunks_per_response[i]}] {response} \n"
if len(line) > 0:
await add_debug_output(line)
human_preview_text = ""
robot_preview_text = ""
if additional_prompt is not None:
prompt = additional_prompt + ". " + prompt
await add_debug_output(f"π¨ {prompt}")
self._prompt_manager.replace_or_append_user_message(prompt)
if self._respond_to_prompt_task is not None:
await self._respond_to_prompt.terminate()
self._respond_to_prompt_task.cancel()
self._respond_to_prompt = RespondToPromptAsync(self._environment_state_actor, self._audio_output_queue)
self._respond_to_prompt_task = asyncio.create_task(self._respond_to_prompt.run(prompt, self._prompt_manager.messages))
additional_prompt = None
previous_prompt = prompt
is_talking = False
has_spoken_for_this_prompt = False
env_state = await self._environment_state_actor.reset_episode.remote()
current_responses = []
speech_chunks_per_response = []
elif len(prompt) > 0 and prompt not in prompts_to_ignore:
# sometimes we get a false signal of speaker_finsihed
# in which case we get new prompts before we have spoken
if len(previous_prompt) > 0 and not has_spoken_for_this_prompt:
additional_prompt = previous_prompt
has_spoken_for_this_prompt = True
if self._respond_to_prompt_task is not None:
await self._respond_to_prompt.terminate()
self._respond_to_prompt_task.cancel()
self._respond_to_prompt_task = None
self._respond_to_prompt = None
env_state = await self._environment_state_actor.reset_episode.remote()
current_responses = []
speech_chunks_per_response = []
if additional_prompt is not None:
prompt = additional_prompt + ". " + prompt
human_preview_text = f"π¨β {prompt}"
for new_response in env_state.llm_responses:
# add_debug_output(f"π€ {new_response}")
self._prompt_manager.append_assistant_message(new_response)
current_responses.append(new_response)
speech_chunks_per_response.append(0)
robot_preview_text = ""
if len(env_state.llm_preview):
robot_preview_text = f"π€β {env_state.llm_preview}"
for chunk in env_state.tts_raw_chunk_ids:
chunk = json.loads(chunk)
# prompt = chunk['prompt']
response_id = chunk['llm_sentence_id']
speech_chunks_per_response[response_id] += 1
list_of_strings = debug_output_history.copy()
line = ""
for i, response in enumerate(current_responses):
line += "π€ " if len(line) == 0 else ""
line += f"[{speech_chunks_per_response[i]}] {response} \n"
# line += f"{response} [{speech_chunks_per_response[i]}] \n"
if len(robot_preview_text) > 0:
line += robot_preview_text+" \n"
list_of_strings.append(line)
if len(human_preview_text) > 0:
list_of_strings.append(human_preview_text)
if len(list_of_strings) > 10:
list_of_strings.pop(0)
await render_debug_output(list_of_strings)
await asyncio.sleep(0.001)
# add observations to the environment state
count = len(self._audio_output_queue)
is_talking = bool(count > 0)
has_spoken_for_this_prompt = has_spoken_for_this_prompt or is_talking
frame = self._animator.update(is_talking)
frame_ref = ray.put(frame)
await self._app_interface_actor.enqueue_video_output_frame.remote(frame_ref)
loops+=1
self.set_state(
f"Processed {total_video_frames} video frames \
and {total_audio_frames} audio frames, \
loops: {loops}. loops per second: {loops/(time.time()-start_time):.2f}. \
Is speaking: {is_talking}({count}). \
{vector_debug}\
", skip_print=True)
def init_ray():
try:
subprocess.check_output(["ray", "start", "--include-dashboard=True", "--head"])
except Exception as e:
print (f"charles_actor.py init_ray: {e}")
# Connect to a running Ray cluster
while not ray.is_initialized():
time.sleep(0.1)
ray_address = os.getenv('RAY_ADDRESS')
if ray_address:
ray.init(ray_address, namespace="project_charles")
else:
ray.init(namespace="project_charles")
async def main():
if not ray.is_initialized():
init_ray()
# charles_actor = CharlesActor.options(
# name="CharlesActor",
# get_if_exists=True,
# ).remote()
# future = charles_actor.start.remote()
charles_actor = CharlesActor()
await charles_actor.start()
last_step = -1
last_episode = -1
try:
while True:
ready, _ = ray.wait([future], timeout=0)
if ready:
# The start method has terminated. You can fetch the result (if any) with ray.get().
# If the method raised an exception, it will be re-raised here.
try:
result = ray.get(future)
print(f"The start method has terminated with result: {result}")
except Exception as e:
print(f"The start method raised an exception: {e}")
break
else:
# The start method is still running. You can poll for debug information here.
await asyncio.sleep(1)
state = await charles_actor.get_state.remote()
env_state = await charles_actor.get_environment_state.remote()
if (env_state.episode != last_episode) or (env_state.step != last_step):
last_episode = env_state.episode
last_step = env_state.step
print(f"Charles is in state: {state}")
# if len(env_state.llm_preview):
# print (f"llm_preview: {env_state.llm_preview}")
# if len(env_state.llm_responses):
# print (f"llm_responses: {env_state.llm_responses}")
# if len(env_state.tts_raw_chunk_ids):
# for chunk_json in env_state.tts_raw_chunk_ids:
# chunk = json.loads(chunk_json)
# prompt = chunk['prompt']
# line = chunk['llm_sentence_id']
# chunk_id = chunk['chunk_count']
# print(f"Prompt: {prompt}, Line: {line}, Chunk: {chunk_id}")
except KeyboardInterrupt as e:
print("Script was manually terminated")
raise(e)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
|