space3 / app.py
sohailq's picture
Update app.py
99d7a63
#import gradio as gr
#from transformers import pipeline
#from fairseq.models.transformer import TransformerModel
# Load the English to Urdu translation model from the transformers library
#model_name_or_path = "Helsinki-NLP/opus-mt-en-ur"
#model_name_or_path = TransformerModel.from_pretrained('samiulhaq/iwslt-bt-en-ur')
#translator = pipeline("translation", model=model_name_or_path, tokenizer=model_name_or_path)
# Create a Gradio interface for the translation app
#def translate(text):
# Use the translator pipeline to translate the input text
# result = translator(text, max_length=500)
# return result[0]['translation_text']
#input_text = gr.inputs.Textbox(label="Input English Text")
#output_text = gr.outputs.Textbox(label="Output Urdu Text")
#app = gr.Interface(fn=translate, inputs=input_text, outputs=output_text)
# Launch the app
#app.launch()
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the English to Urdu translation model from the transformers library
model_name_or_path = "aryanc55/english-urdu"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
# Create a Gradio interface for the translation app
def translate(text):
# Tokenize the input text
inputs = tokenizer(text, return_tensors="pt")
# Use the model to generate the translated text
outputs = model.generate(inputs["input_ids"], max_length=500, early_stopping=True)
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated_text
input_text = gr.inputs.Textbox(label="Input English Text")
output_text = gr.outputs.Textbox(label="Output Urdu Text")
app = gr.Interface(fn=translate, inputs=input_text, outputs=output_text)
# Launch the app
app.launch()