File size: 862 Bytes
1ad14b0 1d64def ef31d2e 553c9a8 1d64def 63267a9 b39033e ef31d2e 553c9a8 1ad14b0 1d64def 63267a9 1d64def |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
import gradio as gr
from transformers import pipeline
#from fairseq.models.transformer import TransformerModel
# Load the English to Urdu translation model from the transformers library
model_name_or_path = "Helsinki-NLP/opus-mt-en-ur"
#model_name_or_path = TransformerModel.from_pretrained('samiulhaq/iwslt-bt-en-ur')
translator = pipeline("translation", model=model_name_or_path, tokenizer=model_name_or_path)
# Create a Gradio interface for the translation app
def translate(text):
# Use the translator pipeline to translate the input text
result = translator(text, max_length=500)
return result[0]['translation_text']
input_text = gr.inputs.Textbox(label="Input English Text")
output_text = gr.outputs.Textbox(label="Output Urdu Text")
app = gr.Interface(fn=translate, inputs=input_text, outputs=output_text)
# Launch the app
app.launch()
|