|
import base64 |
|
from io import BytesIO |
|
|
|
import gradio as gr |
|
import PIL.Image |
|
import torch |
|
|
|
from diffusers import StableDiffusionPipeline, AutoencoderKL, AutoencoderTiny |
|
from peft import PeftModel |
|
|
|
device = "cuda" |
|
weight_type = torch.float16 |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("IDKiro/sdxs-512-dreamshaper", torch_dtype=weight_type) |
|
pipe.unet = PeftModel.from_pretrained(pipe.unet, "IDKiro/sdxs-512-dreamshaper-anime") |
|
pipe.to(torch_device=device, torch_dtype=weight_type) |
|
|
|
vae_tiny = AutoencoderTiny.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae") |
|
vae_tiny.to(device, dtype=weight_type) |
|
|
|
vae_large = AutoencoderKL.from_pretrained("IDKiro/sdxs-512-dreamshaper", subfolder="vae_large") |
|
vae_tiny.to(device, dtype=weight_type) |
|
|
|
def pil_image_to_data_url(img, format="PNG"): |
|
buffered = BytesIO() |
|
img.save(buffered, format=format) |
|
img_str = base64.b64encode(buffered.getvalue()).decode() |
|
return f"data:image/{format.lower()};base64,{img_str}" |
|
|
|
|
|
def run( |
|
prompt: str, |
|
device_type="GPU", |
|
vae_type=None, |
|
param_dtype='torch.float16', |
|
) -> PIL.Image.Image: |
|
if vae_type == "tiny vae": |
|
pipe.vae = vae_tiny |
|
elif vae_type == "large vae": |
|
pipe.vae = vae_large |
|
|
|
if device_type == "CPU": |
|
device = "cpu" |
|
param_dtype = 'torch.float32' |
|
else: |
|
device = "cuda" |
|
|
|
pipe.to(torch_device=device, torch_dtype=torch.float16 if param_dtype == 'torch.float16' else torch.float32) |
|
|
|
result = pipe( |
|
prompt=prompt, |
|
guidance_scale=0.0, |
|
num_inference_steps=1, |
|
output_type="pil", |
|
).images[0] |
|
|
|
result_url = pil_image_to_data_url(result) |
|
|
|
return (result, result_url) |
|
|
|
|
|
examples = [ |
|
"Self-portrait oil painting, a beautiful cyborg with golden hair, 8k", |
|
] |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown("# SDXS-512-DreamShaper Anime") |
|
with gr.Group(): |
|
with gr.Row(): |
|
with gr.Column(min_width=685): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
device_choices = ['GPU','CPU'] |
|
device_type = gr.Radio(device_choices, label='Device', |
|
value=device_choices[0], |
|
interactive=True, |
|
info='Please choose GPU if you have a GPU.') |
|
|
|
vae_choices = ['tiny vae','large vae'] |
|
vae_type = gr.Radio(vae_choices, label='Image Decoder Type', |
|
value=vae_choices[0], |
|
interactive=True, |
|
info='To save GPU memory, use tiny vae. For better quality, use large vae.') |
|
|
|
dtype_choices = ['torch.float16','torch.float32'] |
|
param_dtype = gr.Radio(dtype_choices,label='torch.weight_type', |
|
value=dtype_choices[0], |
|
interactive=True, |
|
info='To save GPU memory, use torch.float16. For better quality, use torch.float32.') |
|
|
|
download_output = gr.Button("Download output", elem_id="download_output") |
|
|
|
with gr.Column(min_width=512): |
|
result = gr.Image(label="Result", height=512, width=512, elem_id="output_image", show_label=False, show_download_button=True) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=result, |
|
fn=run |
|
) |
|
|
|
demo.load(None,None,None) |
|
|
|
inputs = [prompt, device_type, vae_type, param_dtype] |
|
outputs = [result, download_output] |
|
prompt.submit(fn=run, inputs=inputs, outputs=outputs) |
|
run_button.click(fn=run, inputs=inputs, outputs=outputs) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(debug=True) |
|
|