File size: 11,027 Bytes
0c3992e
 
 
 
 
 
c77efb7
0c3992e
 
c77efb7
a00d62c
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77efb7
0c3992e
c77efb7
 
 
 
 
 
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d123e86
 
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d123e86
 
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d123e86
 
c77efb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3992e
 
 
 
 
 
c77efb7
0c3992e
c77efb7
0c3992e
c77efb7
 
 
 
0c3992e
 
d123e86
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77efb7
0c3992e
 
 
 
 
 
 
c77efb7
 
 
 
 
0c3992e
 
c77efb7
0c3992e
 
a00d62c
0c3992e
a00d62c
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
c77efb7
0c3992e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c77efb7
0c3992e
c77efb7
0c3992e
 
 
 
c77efb7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import sys
import json
import torch
import gradio as gr
from pyvis.network import Network
sys.path.append(".")
import re
from src.benchmarks import get_semistructured_data

CONCURRENCY_LIMIT = 1000
TITLE = "STaRK Semi-structured Knowledge Base Explorer"
BRAND_NAME = {
    "amazon": "STaRK-Amazon",
    "mag": "STaRK-MAG",
    "primekg": "STaRK-Prime",
}

NODE_COLORS = [
    "#4285F4",  # Blue
    "#F4B400",  # Yellow
    "#0F9D58",  # Green
    "#00796B",  # Teal
    "#03A9F4",  # Light Blue
    "#CDDC39",  # Lime
    "#3F51B5",  # Indigo
    "#00BCD4",  # Cyan
    "#FFC107",  # Amber
    "#8BC34A",  # Light Green
    "#9E9E9E",  # Grey
    "#607D8B",  # Blue Grey
    "#FFEB3B",  # Bright Yellow
    "#E1F5FE",  # Light Blue 50
    "#F1F8E9",  # Light Green 50
    "#FFF3E0",  # Orange 50
    "#FFFDE7",  # Yellow 50
    "#E0F7FA",  # Cyan 50
    "#E8F5E9",  # Green 50
    "#E3F2FD",  # Blue 50
    "#FFF8E1",  # Amber 50
    "#E0F2F1",  # Teal 50
    "#F9FBE7",  # Lime 50
]

EDGE_COLORS = [
    "#1B5E20",  # Green 900
    "#004D40",  # Teal 900
    "#1A237E",  # Indigo 900
    "#3E2723",  # Brown 900
    "#880E4F",  # Pink 900
    "#01579B",  # Light Blue 900
    "#F57F17",  # Yellow 900
    "#FF6F00",  # Amber 900
    "#4A148C",  # Purple 900
    "#0D47A1",  # Blue 900
    "#006064",  # Cyan 900
    "#827717",  # Lime 900
    "#E8EAF6",  # Indigo 50
    "#ECEFF1",  # Blue Grey 50
    "#9C27B0",  # Purple
    "#311B92",  # Deep Purple 900
    "#673AB7",  # Deep Purple
    "#EDE7F6",  # Deep Purple 50
]

VISJS_HEAD = """
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.9/dist/vis-network.min.js" integrity="sha512-4/EGWWWj7LIr/e+CvsslZkRk0fHDpf04dydJHoHOH32Mpw8jYU28GNI6mruO7fh/1kq15kSvwhKJftMSlgm0FA==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.9/dist/dist/vis-network.min.css" integrity="sha512-WgxfT5LWjfszlPHXRmBWHkV2eceiWTOBvrKCNbdgDYTHrT2AeLCGbF4sZlZw3UMN3WtL0tGUoIAKsu8mllg/XA==" crossorigin="anonymous" referrerpolicy="no-referrer" />
<style type="text/css"> .graph-area { flex-basis: 30% !important; } .network-graph { width: 100%; height: 600px; background-color: #ffffff; border: 1px solid lightgray; position: relative; float: left; } </style>
"""
with open("interactive/draw_graph.js", "r") as f:
    VISJS_HEAD += f"<script>{f.read()}</script>"


def relabel(x, edge_index, batch, pos=None):
    num_nodes = x.size(0)
    sub_nodes = torch.unique(edge_index)
    x = x[sub_nodes]
    batch = batch[sub_nodes]
    row, col = edge_index
    # remapping the nodes in the explanatory subgraph to new ids.
    node_idx = row.new_full((num_nodes,), -1)
    node_idx[sub_nodes] = torch.arange(sub_nodes.size(0), device=row.device)
    edge_index = node_idx[edge_index]
    if pos is not None:
        pos = pos[sub_nodes]
    return x, edge_index, batch, pos


def generate_network(kb, node_id, max_nodes=10, num_hops='2'):
    max_nodes = int(max_nodes)
    if 'gene/protein' in kb.node_type_dict.values():
        indirected = True
        net = Network(directed=False)
    else:
        indirected = False
        net = Network()

    def get_one_hop(kb, node_id, max_nodes):
        edge_index = kb.edge_index
        mask = (
            torch.Tensor(edge_index[0] == node_id).float()
            + torch.Tensor(edge_index[1] == node_id).float()
        ) > 0
        edge_index_with_node_id = edge_index[:, mask]
        edge_types = kb.edge_types[mask]
        # take the edge index with
        # ramdomly sample max_nodes edges
        if edge_index_with_node_id.size(1) > max_nodes:
            perm = torch.randperm(edge_index_with_node_id.size(1))
            edge_index_with_node_id = edge_index_with_node_id[:, perm[:max_nodes]]
            edge_types = edge_types[perm[:max_nodes]]

        return edge_index_with_node_id, edge_types

    if num_hops == "1":
        edge_index, edge_types = get_one_hop(kb, node_id, max_nodes)
    if num_hops == "2":
        edge_index, edge_types = get_one_hop(kb, node_id, max_nodes)
        neighbor_nodes = torch.unique(edge_index).tolist()
        if node_id in neighbor_nodes:
            neighbor_nodes.remove(node_id)

        for neighbor_node in neighbor_nodes:
            e_index, e_type = get_one_hop(kb, neighbor_node, max_nodes=1)
            edge_index = torch.cat([edge_index, e_index], dim=1)
            edge_types = torch.cat([edge_types, e_type], dim=0)
    if num_hops == "inf":
        edge_index, edge_types = kb.edge_index, kb.edge_types
        # sample max_nodes edges
        if edge_index.size(1) > max_nodes:
            perm = torch.randperm(edge_index.size(1))
            edge_index = edge_index[:, perm[:max_nodes]]
            edge_types = edge_types[perm[:max_nodes]]
        add_edge_index, add_edge_types = get_one_hop(kb, node_id, max_nodes=1)
        edge_index = torch.cat([edge_index, add_edge_index], dim=1)
        edge_types = torch.cat([edge_types, add_edge_types], dim=0)

    # add a self-loop for node_id to avoid isolated node
    edge_index = torch.concat([edge_index, torch.LongTensor([[node_id], [node_id]])], dim=1)
    node_ids, relabel_edge_index, _, _ = relabel(
        torch.arange(kb.num_nodes()), edge_index, batch=torch.zeros(kb.num_nodes())
    )
    for idx, n_id in enumerate(node_ids):
        if node_id == n_id:
            net.add_node(
                idx,
                node_id=n_id.item(),
                color="#DB4437",
                size=20,
                label=f"{kb.node_type_dict[kb.node_types[n_id].item()]}<{n_id}>",
                font={"align": "middle", "size": 10},
            )
        else:
            net.add_node(
                idx,
                node_id=n_id.item(),
                size=15,
                color=NODE_COLORS[kb.node_types[n_id].item()],
                label=f"{kb.node_type_dict[kb.node_types[n_id].item()]}",
                font={"align": "middle", "size": 10},
            )
    for idx in range(relabel_edge_index.size(-1)):
        if relabel_edge_index[0][idx].item() == relabel_edge_index[1][idx].item():
            continue
        if indirected:
            net.add_edge(
                relabel_edge_index[0][idx].item(),
                relabel_edge_index[1][idx].item(),
                color=EDGE_COLORS[edge_types[idx].item()],
                label=kb.edge_type_dict[edge_types[idx].item()]
                .replace('___', " ")
                .replace('_', " "),
                width=1,
                font={"align": "middle", "size": 10})
        else:
            net.add_edge(
                relabel_edge_index[0][idx].item(),
                relabel_edge_index[1][idx].item(),
                color=EDGE_COLORS[edge_types[idx].item()],
                label=kb.edge_type_dict[edge_types[idx].item()]
                .replace('___', " ")
                .replace('_', " "),
                width=1,
                font={"align": "middle", "size": 10},
                arrows="to",
                arrowStrikethrough=False)
    return net.get_network_data()


def get_text_html(kb, node_id):
    text = kb.get_doc_info(node_id, add_rel=False, compact=False)
    # add a title
    text = text.replace("\n", "<br>").replace(" ", "&nbsp;")
    text = f"<h3>Textual Info of Entity {node_id}:</h3>{text}"
    text = re.sub(r"\$([^$]+)\$", r"\\(\1\\)", text)
    # show the text as what it is with empty space and can be scrolled
    return f"""<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
        <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
        <div style="width: 100%; height: 600px; overflow-x: hidden; overflow-y: scroll; overflow-wrap: break-word; hyphens: auto; padding: 10px; margin: 0 auto; border: 1px solid #ccc; line-height: 1.5;
        font-family: SF Pro Text, SF Pro Icons, Helvetica Neue, Helvetica, Arial, sans-serif;">{text}</div>"""


def get_subgraph_html(kb, kb_name, node_id, max_nodes=10, num_hops='1'):
    network = generate_network(kb, node_id, max_nodes, num_hops)

    nodes = network[0]
    edges = network[1]

    # A dirty hack to trigger the drawGraph function ;)
    # Have to do it this way because of the way Gradio handles HTML updates
    figure_html = f"""
    <div id="{kb_name}-network" class="network-graph"></div>
    <img src="/dummy.img" style="display: none;" onerror='drawGraph({json.dumps({"nodes": nodes, "edges": edges, "dataset": kb_name})});'>
    """

    return figure_html


def main():
    # kb = get_semistructured_data(DATASET_NAME)
    kbs = {k: get_semistructured_data(k, indirected=False) for k in BRAND_NAME.keys()}

    with gr.Blocks(head=VISJS_HEAD, title=TITLE) as demo:
        gr.Markdown(f"# {TITLE}")
        for name, kb in kbs.items():
            with gr.Tab(BRAND_NAME[name]):
                with gr.Row():
                    entity_id = gr.Number(
                        label="Entity ID", 
                        elem_id=f"{name}-entity-id-input"
                    )
                    max_paths = gr.Slider(
                        1, 200, 10, step=1, label="Max Number of Paths"
                    )
                    num_hops = gr.Dropdown(
                        ["1", "2", "inf"], value="2", label="Number of Hops"
                    )
                    query_btn = gr.Button(
                        value="Display Semi-structured Data",
                        variant="primary",
                        elem_id=f"{name}-fetch-btn"
                    )

                with gr.Row():
                    graph_area = gr.HTML(elem_classes="graph-area")
                    text_area = gr.HTML(elem_classes="text-area")

                query_btn.click(
                    # copy capture current kb and name
                    lambda e, n, h, kb=kb, name=name: (
                        get_subgraph_html(kb, name, e, n, h),
                        get_text_html(kb, e),
                    ),
                    inputs=[entity_id, max_paths, num_hops],
                    outputs=[graph_area, text_area],
                    api_name=f"{name}-fetch-graph"
                )

                # Hidden inputs for fetch just text
                with gr.Row(visible=False):
                    entity_for_text = gr.Number(
                        label="Text Entity ID", elem_id=f"{name}-entity-id-text-input"
                    )
                    query_text_btn = gr.Button(
                        value="Show Text", elem_id=f"{name}-fetch-text-btn"
                    )

                query_text_btn.click(
                    lambda e, kb=kb: get_text_html(kb, e),
                    inputs=[entity_for_text],
                    outputs=text_area,
                    api_name=f"{name}-fetch-text"
                )
    demo.queue(max_size=2*CONCURRENCY_LIMIT, default_concurrency_limit=CONCURRENCY_LIMIT)
    demo.launch(share=True)


if __name__ == "__main__":
    main()