Spaces:
Sleeping
Sleeping
File size: 11,027 Bytes
0c3992e c77efb7 0c3992e c77efb7 a00d62c 0c3992e c77efb7 0c3992e c77efb7 0c3992e d123e86 0c3992e d123e86 0c3992e d123e86 c77efb7 0c3992e c77efb7 0c3992e c77efb7 0c3992e c77efb7 0c3992e d123e86 0c3992e c77efb7 0c3992e c77efb7 0c3992e c77efb7 0c3992e a00d62c 0c3992e a00d62c 0c3992e c77efb7 0c3992e c77efb7 0c3992e c77efb7 0c3992e c77efb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import sys
import json
import torch
import gradio as gr
from pyvis.network import Network
sys.path.append(".")
import re
from src.benchmarks import get_semistructured_data
CONCURRENCY_LIMIT = 1000
TITLE = "STaRK Semi-structured Knowledge Base Explorer"
BRAND_NAME = {
"amazon": "STaRK-Amazon",
"mag": "STaRK-MAG",
"primekg": "STaRK-Prime",
}
NODE_COLORS = [
"#4285F4", # Blue
"#F4B400", # Yellow
"#0F9D58", # Green
"#00796B", # Teal
"#03A9F4", # Light Blue
"#CDDC39", # Lime
"#3F51B5", # Indigo
"#00BCD4", # Cyan
"#FFC107", # Amber
"#8BC34A", # Light Green
"#9E9E9E", # Grey
"#607D8B", # Blue Grey
"#FFEB3B", # Bright Yellow
"#E1F5FE", # Light Blue 50
"#F1F8E9", # Light Green 50
"#FFF3E0", # Orange 50
"#FFFDE7", # Yellow 50
"#E0F7FA", # Cyan 50
"#E8F5E9", # Green 50
"#E3F2FD", # Blue 50
"#FFF8E1", # Amber 50
"#E0F2F1", # Teal 50
"#F9FBE7", # Lime 50
]
EDGE_COLORS = [
"#1B5E20", # Green 900
"#004D40", # Teal 900
"#1A237E", # Indigo 900
"#3E2723", # Brown 900
"#880E4F", # Pink 900
"#01579B", # Light Blue 900
"#F57F17", # Yellow 900
"#FF6F00", # Amber 900
"#4A148C", # Purple 900
"#0D47A1", # Blue 900
"#006064", # Cyan 900
"#827717", # Lime 900
"#E8EAF6", # Indigo 50
"#ECEFF1", # Blue Grey 50
"#9C27B0", # Purple
"#311B92", # Deep Purple 900
"#673AB7", # Deep Purple
"#EDE7F6", # Deep Purple 50
]
VISJS_HEAD = """
<script src="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.9/dist/vis-network.min.js" integrity="sha512-4/EGWWWj7LIr/e+CvsslZkRk0fHDpf04dydJHoHOH32Mpw8jYU28GNI6mruO7fh/1kq15kSvwhKJftMSlgm0FA==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/vis-network/9.1.9/dist/dist/vis-network.min.css" integrity="sha512-WgxfT5LWjfszlPHXRmBWHkV2eceiWTOBvrKCNbdgDYTHrT2AeLCGbF4sZlZw3UMN3WtL0tGUoIAKsu8mllg/XA==" crossorigin="anonymous" referrerpolicy="no-referrer" />
<style type="text/css"> .graph-area { flex-basis: 30% !important; } .network-graph { width: 100%; height: 600px; background-color: #ffffff; border: 1px solid lightgray; position: relative; float: left; } </style>
"""
with open("interactive/draw_graph.js", "r") as f:
VISJS_HEAD += f"<script>{f.read()}</script>"
def relabel(x, edge_index, batch, pos=None):
num_nodes = x.size(0)
sub_nodes = torch.unique(edge_index)
x = x[sub_nodes]
batch = batch[sub_nodes]
row, col = edge_index
# remapping the nodes in the explanatory subgraph to new ids.
node_idx = row.new_full((num_nodes,), -1)
node_idx[sub_nodes] = torch.arange(sub_nodes.size(0), device=row.device)
edge_index = node_idx[edge_index]
if pos is not None:
pos = pos[sub_nodes]
return x, edge_index, batch, pos
def generate_network(kb, node_id, max_nodes=10, num_hops='2'):
max_nodes = int(max_nodes)
if 'gene/protein' in kb.node_type_dict.values():
indirected = True
net = Network(directed=False)
else:
indirected = False
net = Network()
def get_one_hop(kb, node_id, max_nodes):
edge_index = kb.edge_index
mask = (
torch.Tensor(edge_index[0] == node_id).float()
+ torch.Tensor(edge_index[1] == node_id).float()
) > 0
edge_index_with_node_id = edge_index[:, mask]
edge_types = kb.edge_types[mask]
# take the edge index with
# ramdomly sample max_nodes edges
if edge_index_with_node_id.size(1) > max_nodes:
perm = torch.randperm(edge_index_with_node_id.size(1))
edge_index_with_node_id = edge_index_with_node_id[:, perm[:max_nodes]]
edge_types = edge_types[perm[:max_nodes]]
return edge_index_with_node_id, edge_types
if num_hops == "1":
edge_index, edge_types = get_one_hop(kb, node_id, max_nodes)
if num_hops == "2":
edge_index, edge_types = get_one_hop(kb, node_id, max_nodes)
neighbor_nodes = torch.unique(edge_index).tolist()
if node_id in neighbor_nodes:
neighbor_nodes.remove(node_id)
for neighbor_node in neighbor_nodes:
e_index, e_type = get_one_hop(kb, neighbor_node, max_nodes=1)
edge_index = torch.cat([edge_index, e_index], dim=1)
edge_types = torch.cat([edge_types, e_type], dim=0)
if num_hops == "inf":
edge_index, edge_types = kb.edge_index, kb.edge_types
# sample max_nodes edges
if edge_index.size(1) > max_nodes:
perm = torch.randperm(edge_index.size(1))
edge_index = edge_index[:, perm[:max_nodes]]
edge_types = edge_types[perm[:max_nodes]]
add_edge_index, add_edge_types = get_one_hop(kb, node_id, max_nodes=1)
edge_index = torch.cat([edge_index, add_edge_index], dim=1)
edge_types = torch.cat([edge_types, add_edge_types], dim=0)
# add a self-loop for node_id to avoid isolated node
edge_index = torch.concat([edge_index, torch.LongTensor([[node_id], [node_id]])], dim=1)
node_ids, relabel_edge_index, _, _ = relabel(
torch.arange(kb.num_nodes()), edge_index, batch=torch.zeros(kb.num_nodes())
)
for idx, n_id in enumerate(node_ids):
if node_id == n_id:
net.add_node(
idx,
node_id=n_id.item(),
color="#DB4437",
size=20,
label=f"{kb.node_type_dict[kb.node_types[n_id].item()]}<{n_id}>",
font={"align": "middle", "size": 10},
)
else:
net.add_node(
idx,
node_id=n_id.item(),
size=15,
color=NODE_COLORS[kb.node_types[n_id].item()],
label=f"{kb.node_type_dict[kb.node_types[n_id].item()]}",
font={"align": "middle", "size": 10},
)
for idx in range(relabel_edge_index.size(-1)):
if relabel_edge_index[0][idx].item() == relabel_edge_index[1][idx].item():
continue
if indirected:
net.add_edge(
relabel_edge_index[0][idx].item(),
relabel_edge_index[1][idx].item(),
color=EDGE_COLORS[edge_types[idx].item()],
label=kb.edge_type_dict[edge_types[idx].item()]
.replace('___', " ")
.replace('_', " "),
width=1,
font={"align": "middle", "size": 10})
else:
net.add_edge(
relabel_edge_index[0][idx].item(),
relabel_edge_index[1][idx].item(),
color=EDGE_COLORS[edge_types[idx].item()],
label=kb.edge_type_dict[edge_types[idx].item()]
.replace('___', " ")
.replace('_', " "),
width=1,
font={"align": "middle", "size": 10},
arrows="to",
arrowStrikethrough=False)
return net.get_network_data()
def get_text_html(kb, node_id):
text = kb.get_doc_info(node_id, add_rel=False, compact=False)
# add a title
text = text.replace("\n", "<br>").replace(" ", " ")
text = f"<h3>Textual Info of Entity {node_id}:</h3>{text}"
text = re.sub(r"\$([^$]+)\$", r"\\(\1\\)", text)
# show the text as what it is with empty space and can be scrolled
return f"""<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<div style="width: 100%; height: 600px; overflow-x: hidden; overflow-y: scroll; overflow-wrap: break-word; hyphens: auto; padding: 10px; margin: 0 auto; border: 1px solid #ccc; line-height: 1.5;
font-family: SF Pro Text, SF Pro Icons, Helvetica Neue, Helvetica, Arial, sans-serif;">{text}</div>"""
def get_subgraph_html(kb, kb_name, node_id, max_nodes=10, num_hops='1'):
network = generate_network(kb, node_id, max_nodes, num_hops)
nodes = network[0]
edges = network[1]
# A dirty hack to trigger the drawGraph function ;)
# Have to do it this way because of the way Gradio handles HTML updates
figure_html = f"""
<div id="{kb_name}-network" class="network-graph"></div>
<img src="/dummy.img" style="display: none;" onerror='drawGraph({json.dumps({"nodes": nodes, "edges": edges, "dataset": kb_name})});'>
"""
return figure_html
def main():
# kb = get_semistructured_data(DATASET_NAME)
kbs = {k: get_semistructured_data(k, indirected=False) for k in BRAND_NAME.keys()}
with gr.Blocks(head=VISJS_HEAD, title=TITLE) as demo:
gr.Markdown(f"# {TITLE}")
for name, kb in kbs.items():
with gr.Tab(BRAND_NAME[name]):
with gr.Row():
entity_id = gr.Number(
label="Entity ID",
elem_id=f"{name}-entity-id-input"
)
max_paths = gr.Slider(
1, 200, 10, step=1, label="Max Number of Paths"
)
num_hops = gr.Dropdown(
["1", "2", "inf"], value="2", label="Number of Hops"
)
query_btn = gr.Button(
value="Display Semi-structured Data",
variant="primary",
elem_id=f"{name}-fetch-btn"
)
with gr.Row():
graph_area = gr.HTML(elem_classes="graph-area")
text_area = gr.HTML(elem_classes="text-area")
query_btn.click(
# copy capture current kb and name
lambda e, n, h, kb=kb, name=name: (
get_subgraph_html(kb, name, e, n, h),
get_text_html(kb, e),
),
inputs=[entity_id, max_paths, num_hops],
outputs=[graph_area, text_area],
api_name=f"{name}-fetch-graph"
)
# Hidden inputs for fetch just text
with gr.Row(visible=False):
entity_for_text = gr.Number(
label="Text Entity ID", elem_id=f"{name}-entity-id-text-input"
)
query_text_btn = gr.Button(
value="Show Text", elem_id=f"{name}-fetch-text-btn"
)
query_text_btn.click(
lambda e, kb=kb: get_text_html(kb, e),
inputs=[entity_for_text],
outputs=text_area,
api_name=f"{name}-fetch-text"
)
demo.queue(max_size=2*CONCURRENCY_LIMIT, default_concurrency_limit=CONCURRENCY_LIMIT)
demo.launch(share=True)
if __name__ == "__main__":
main() |