Spaces:
Running
on
Zero
Running
on
Zero
amildravid4292
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -12,14 +12,15 @@ from utils import load_models, save_model_w2w, save_model_for_diffusers
|
|
12 |
from sampling import sample_weights
|
13 |
from huggingface_hub import snapshot_download
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
device = "cuda:0"
|
|
|
23 |
|
24 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
25 |
|
@@ -31,30 +32,33 @@ df = torch.load(f"{models_path}/identity_df.pt")
|
|
31 |
weight_dimensions = torch.load(f"{models_path}/weight_dimensions.pt")
|
32 |
|
33 |
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device)
|
34 |
-
network
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
latents = torch.randn(
|
53 |
(1, unet.in_channels, 512 // 8, 512 // 8),
|
54 |
generator = generator,
|
55 |
device = device
|
56 |
).bfloat16()
|
57 |
|
|
|
58 |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
59 |
|
60 |
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
@@ -87,8 +91,12 @@ def inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
|
87 |
|
88 |
return [image]
|
89 |
|
90 |
-
|
|
|
|
|
|
|
91 |
gr.Markdown("# <em>weights2weights</em> Demo")
|
|
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
files = gr.Files(
|
@@ -106,9 +114,9 @@ with gr.Blocks() as demo:
|
|
106 |
placeholder="sks person",
|
107 |
value="sks person")
|
108 |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, cartoon", value="low quality, blurry, unfinished, cartoon")
|
109 |
-
seed = gr.Number(value=5, label="Seed", interactive=True)
|
110 |
cfg = gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
|
111 |
-
steps = gr.Slider(label="Inference Steps", value=50, step=1, minimum=0, maximum=100, interactive=True)
|
112 |
|
113 |
|
114 |
submit = gr.Button("Submit")
|
@@ -116,10 +124,15 @@ with gr.Blocks() as demo:
|
|
116 |
with gr.Column():
|
117 |
gallery = gr.Gallery(label="Generated Images")
|
118 |
|
119 |
-
|
120 |
|
121 |
submit.click(fn=inference,
|
122 |
inputs=[prompt, negative_prompt, cfg, steps, seed],
|
123 |
outputs=gallery)
|
124 |
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from sampling import sample_weights
|
13 |
from huggingface_hub import snapshot_download
|
14 |
|
15 |
+
global device
|
16 |
+
global generator
|
17 |
+
global unet
|
18 |
+
global vae
|
19 |
+
global text_encoder
|
20 |
+
global tokenizer
|
21 |
+
global noise_scheduler
|
22 |
device = "cuda:0"
|
23 |
+
generator = torch.Generator(device=device)
|
24 |
|
25 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
26 |
|
|
|
32 |
weight_dimensions = torch.load(f"{models_path}/weight_dimensions.pt")
|
33 |
|
34 |
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device)
|
35 |
+
global network
|
36 |
+
|
37 |
+
def sample_model():
|
38 |
+
global unet
|
39 |
+
del unet
|
40 |
+
global network
|
41 |
+
unet, _, _, _, _ = load_models(device)
|
42 |
+
network = sample_weights(unet, proj, mean, std, v[:, :1000], device, factor = 1.00)
|
43 |
+
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
def inference( prompt, negative_prompt, guidance_scale, ddim_steps, seed):
|
47 |
+
global device
|
48 |
+
global generator
|
49 |
+
global unet
|
50 |
+
global vae
|
51 |
+
global text_encoder
|
52 |
+
global tokenizer
|
53 |
+
global noise_scheduler
|
54 |
+
generator = generator.manual_seed(seed)
|
55 |
latents = torch.randn(
|
56 |
(1, unet.in_channels, 512 // 8, 512 // 8),
|
57 |
generator = generator,
|
58 |
device = device
|
59 |
).bfloat16()
|
60 |
|
61 |
+
|
62 |
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
|
63 |
|
64 |
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
|
|
|
91 |
|
92 |
return [image]
|
93 |
|
94 |
+
|
95 |
+
|
96 |
+
css = ''
|
97 |
+
with gr.Blocks(css=css) as demo:
|
98 |
gr.Markdown("# <em>weights2weights</em> Demo")
|
99 |
+
gr.Markdown("Demo for the [h94/IP-Adapter-FaceID model](https://huggingface.co/h94/IP-Adapter-FaceID) - Generate AI images with your own face - Non-commercial license")
|
100 |
with gr.Row():
|
101 |
with gr.Column():
|
102 |
files = gr.Files(
|
|
|
114 |
placeholder="sks person",
|
115 |
value="sks person")
|
116 |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, cartoon", value="low quality, blurry, unfinished, cartoon")
|
117 |
+
seed = gr.Number(value=5, precision=0, label="Seed", interactive=True)
|
118 |
cfg = gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
|
119 |
+
steps = gr.Slider(label="Inference Steps", precision=0, value=50, step=1, minimum=0, maximum=100, interactive=True)
|
120 |
|
121 |
|
122 |
submit = gr.Button("Submit")
|
|
|
124 |
with gr.Column():
|
125 |
gallery = gr.Gallery(label="Generated Images")
|
126 |
|
127 |
+
sample.click(fn=sample_model)
|
128 |
|
129 |
submit.click(fn=inference,
|
130 |
inputs=[prompt, negative_prompt, cfg, steps, seed],
|
131 |
outputs=gallery)
|
132 |
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
demo.launch(share=True)
|