Spaces:
Running
on
Zero
Running
on
Zero
amildravid4292
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -35,44 +35,37 @@ import spaces
|
|
35 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
36 |
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
# Load scheduler, tokenizer and models.
|
46 |
-
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
47 |
torch_dtype=torch.float16,safety_checker = None,
|
48 |
requires_safety_checker = False).to(device)
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
53 |
)
|
54 |
-
|
55 |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
56 |
)
|
57 |
-
|
58 |
-
|
59 |
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
60 |
)
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
return unet, vae, text_encoder, tokenizer, noise_scheduler
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
|
|
76 |
|
77 |
device="cuda"
|
78 |
mean = torch.load(f"{models_path}/files/mean.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
@@ -83,7 +76,7 @@ df = torch.load(f"{models_path}/files/identity_df.pt")
|
|
83 |
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
|
84 |
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
85 |
|
86 |
-
|
87 |
|
88 |
|
89 |
@spaces.GPU
|
|
|
35 |
models_path = snapshot_download(repo_id="Snapchat/w2w")
|
36 |
|
37 |
|
38 |
+
|
39 |
+
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51"
|
40 |
+
revision = None
|
41 |
+
weight_dtype = torch.bfloat16
|
42 |
+
# Load scheduler, tokenizer and models.
|
43 |
+
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51",
|
|
|
|
|
|
|
44 |
torch_dtype=torch.float16,safety_checker = None,
|
45 |
requires_safety_checker = False).to(device)
|
46 |
+
noise_scheduler = pipe.scheduler
|
47 |
+
del pipe
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
49 |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision
|
50 |
)
|
51 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
52 |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision
|
53 |
)
|
54 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision)
|
55 |
+
unet = UNet2DConditionModel.from_pretrained(
|
56 |
pretrained_model_name_or_path, subfolder="unet", revision=revision
|
57 |
)
|
58 |
+
unet.requires_grad_(False)
|
59 |
+
unet.to(device, dtype=weight_dtype)
|
60 |
+
vae.requires_grad_(False)
|
61 |
|
62 |
+
text_encoder.requires_grad_(False)
|
63 |
+
vae.requires_grad_(False)
|
64 |
+
vae.to(device, dtype=weight_dtype)
|
65 |
+
text_encoder.to(device, dtype=weight_dtype)
|
66 |
+
print("")
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
|
69 |
|
70 |
device="cuda"
|
71 |
mean = torch.load(f"{models_path}/files/mean.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
|
|
76 |
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
|
77 |
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device)
|
78 |
|
79 |
+
|
80 |
|
81 |
|
82 |
@spaces.GPU
|