Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import torchvision | |
import torchvision.transforms as transforms | |
from torch.utils.data import Dataset, DataLoader | |
import gradio as gr | |
import sys | |
import tqdm | |
import uuid | |
sys.path.append(os.path.abspath(os.path.join("", ".."))) | |
import gc | |
import warnings | |
warnings.filterwarnings("ignore") | |
from PIL import Image | |
import numpy as np | |
from editing import get_direction, debias | |
from sampling import sample_weights | |
from lora_w2w import LoRAw2w | |
from transformers import CLIPTextModel | |
from lora_w2w import LoRAw2w | |
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler | |
from transformers import AutoTokenizer, PretrainedConfig | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
DPMSolverMultistepScheduler, | |
UNet2DConditionModel, | |
PNDMScheduler, | |
StableDiffusionPipeline | |
) | |
from huggingface_hub import snapshot_download | |
import spaces | |
models_path = snapshot_download(repo_id="Snapchat/w2w") | |
def load_models(device): | |
pretrained_model_name_or_path = "stablediffusionapi/realistic-vision-v51" | |
revision = None | |
weight_dtype = torch.bfloat16 | |
# Load scheduler, tokenizer and models. | |
pipe = StableDiffusionPipeline.from_pretrained("stablediffusionapi/realistic-vision-v51", | |
torch_dtype=torch.float16,safety_checker = None, | |
requires_safety_checker = False).to(device) | |
noise_scheduler = pipe.scheduler | |
del pipe | |
tokenizer = AutoTokenizer.from_pretrained( | |
pretrained_model_name_or_path, subfolder="tokenizer", revision=revision | |
) | |
text_encoder = CLIPTextModel.from_pretrained( | |
pretrained_model_name_or_path, subfolder="text_encoder", revision=revision | |
) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae", revision=revision) | |
unet = UNet2DConditionModel.from_pretrained( | |
pretrained_model_name_or_path, subfolder="unet", revision=revision | |
) | |
unet.requires_grad_(False) | |
unet.to(device, dtype=weight_dtype) | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
vae.requires_grad_(False) | |
vae.to(device, dtype=weight_dtype) | |
text_encoder.to(device, dtype=weight_dtype) | |
print("") | |
return unet, vae, text_encoder, tokenizer, noise_scheduler | |
device="cuda" | |
mean = torch.load(f"{models_path}/files/mean.pt", map_location=torch.device('cpu')).bfloat16().to(device) | |
std = torch.load(f"{models_path}/files/std.pt", map_location=torch.device('cpu')).bfloat16().to(device) | |
v = torch.load(f"{models_path}/files/V.pt", map_location=torch.device('cpu')).bfloat16().to(device) | |
proj = torch.load(f"{models_path}/files/proj_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device) | |
df = torch.load(f"{models_path}/files/identity_df.pt") | |
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt") | |
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt", map_location=torch.device('cpu')).bfloat16().to(device) | |
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device) | |
def sample_then_run(): | |
# get mean and standard deviation for each principal component | |
m = torch.mean(proj, 0) | |
standev = torch.std(proj, 0) | |
# sample | |
sample = torch.zeros([1, 1000]).to(device) | |
for i in range(1000): | |
sample[0, i] = torch.normal(m[i], factor*standev[i], (1,1)) | |
net = "model_"+str(uuid.uuid4())[:4]+".pt" | |
return net | |
with gr.Blocks(css="style.css") as demo: | |
net = gr.State() | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
sample = gr.Button("🎲 Sample New Model") | |
sample.click(fn=sample_then_run, inputs = [net], outputs=[net]) | |
demo.queue().launch() | |