import streamlit as st import BERTopic from PIL import Image from transformers import ( pipeline, BlenderbotTokenizer, BlenderbotForConditionalGeneration, ) # Function to load VQA pipeline @st.cache(allow_output_mutation=True) def load_vqa_pipeline(): return pipeline(task="visual-question-answering", model="dandelin/vilt-b32-finetuned-vqa") # Function to load BERT-based pipeline @st.cache(allow_output_mutation=True) def load_bbu_pipeline(): return pipeline(task="fill-mask", model="bert-base-uncased") # Function to load Blenderbot model @st.cache(allow_output_mutation=True) def load_blenderbot_model(): model_name = "facebook/blenderbot-400M-distill" tokenizer = BlenderbotTokenizer.from_pretrained(pretrained_model_name_or_path=model_name) return BlenderbotForConditionalGeneration.from_pretrained(pretrained_model_name_or_path=model_name) # Function to load GPT-2 pipeline @st.cache(allow_output_mutation=True) def load_gpt2_pipeline(): return pipeline(task="text-generation", model="gpt2") # Function to load BERTopic models @st.cache(allow_output_mutation=True) def load_topic_models(): topic_model_1 = BERTopic.load(path="davanstrien/chat_topics") topic_model_2 = BERTopic.load(path="MaartenGr/BERTopic_ArXiv") return topic_model_1, topic_model_2 st.title("Georgios Ioannou's Visual Question Answering With Hugging Face") st.write("Drag and drop an image file here.") # Allow the user to upload an image file image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if image is not None: # Display the uploaded image image = Image.open(image) st.image(image, caption="Uploaded Image", use_column_width=True) question = st.text_input("What's your question?") # Load models using the cache vqa_pipeline = load_vqa_pipeline() bbu_pipeline = load_bbu_pipeline() facebook_model = load_blenderbot_model() gpt2_pipeline = load_gpt2_pipeline() topic_model_1, topic_model_2 = load_topic_models() # Model 1. vqa_pipeline_output = vqa_pipeline(image, question, top_k=5)[0] # Model 2. text = ( "I love " + str(vqa_pipeline_output["answer"]) + " and I would like to know how to [MASK]." ) bbu_pipeline_output = bbu_pipeline(text) # Model 3. utterance = bbu_pipeline_output[0]["sequence"] inputs = tokenizer(utterance, return_tensors="pt") result = facebook_model.generate(**inputs) facebook_model_output = tokenizer.decode(result[0]) # Model 4. facebook_model_output = facebook_model_output.replace(" ", "") facebook_model_output = facebook_model_output.replace("", "") facebook_model_output = facebook_model_output.replace("", "") gpt2_pipeline_output = gpt2_pipeline(facebook_model_output)[0]["generated_text"] # Model 5. topic, prob = topic_model_1.transform(gpt2_pipeline_output) topic_model_1_output = topic_model_1.get_topic_info(topic[0])["Representation"][ 0 ] topic, prob = topic_model_2.transform(gpt2_pipeline_output) topic_model_2_output = topic_model_2.get_topic_info(topic[0])["Representation"][ 0 ] st.write("-" * 150) st.write("vqa_pipeline_output =", vqa_pipeline_output) st.write("bbu_pipeline_output =", bbu_pipeline_output) st.write("facebook_model_output =", facebook_model_output) st.write("gpt2_pipeline_output =", gpt2_pipeline_output) st.write("topic_model_1_output =", topic_model_1_output) st.write("topic_model_2_output =", topic_model_2_output) st.write("-" * 150) st.write("SUMMARY") st.subheader("Your Image:") st.image(image, caption="Your Image", use_column_width=True) st.subheader("Your Question:") st.write(question) st.write("-" * 100) st.subheader("1. Highest Predicted Answer For Your Question:") st.write(vqa_pipeline_output["answer"]) st.write(text) st.subheader("2. Highest Predicted Sequence On [MASK] Based on 1.:") st.write(bbu_pipeline_output[0]["sequence"]) st.subheader("3. Conversation Based On Previous Answer Based on 2.:") st.write(facebook_model_output) st.subheader("4. Text Generated Based On Previous Answer Based on 3.:") st.write(gpt2_pipeline_output) st.subheader("5. Highest Predicted Topic Model_1 For Previous The Answer Based on 4.:") st.write(topic_model_1_output) st.subheader("6. Highest Predicted Topic Model_2 For Previous The Answer Based on 4.:") st.write(topic_model_2_output) st.write("-" * 150)