File size: 1,615 Bytes
c2198c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729a692
c2198c3
 
 
729a692
 
 
 
 
 
 
 
 
c2198c3
 
729a692
 
 
 
 
 
c2198c3
 
 
 
 
729a692
c2198c3
 
729a692
 
 
c2198c3
 
 
729a692
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<!DOCTYPE html>
<html>
    <head>
        <meta charset="utf-8">
        <meta name="viewport" content="width=device-width, initial-scale=1">
        <title>Gradio-Lite: Serverless Gradio Running Entirely in Your Browser</title>
        <meta name="description" content="Gradio-Lite: Serverless Gradio Running Entirely in Your Browser">

        <script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.js"></script>
        <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/lite/dist/lite.css" />

        <style>
            html, body {
                margin: 0;
                padding: 0;
                height: 100%;
            }
        </style>
    </head>
    <body>
        <gradio-lite>
            <gradio-file name="app.py" entrypoint>
from transformers_js_py import import_transformers_js, read_audio
import gradio as gr


transformers = await import_transformers_js()
pipeline = transformers.pipeline
pipe = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en')


async def asr(audio_path):
    audio = read_audio(audio_path, 16000)
    result = await pipe(audio)
    return result["text"]

demo = gr.Interface(
    asr,
    gr.Audio(type="filepath"),
    gr.Text(),
    examples=[
        ["jfk.wav"],
    ]
)

demo.launch()
            </gradio-file>

            <gradio-file name="jfk.wav" url="https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav" />

            <gradio-requirements>
transformers_js_py
numpy
scipy
            </gradio-requirements>
        </gradio-lite>
    </body>
</html>