""" Author: Luigi Piccinelli Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) """ from math import pi from typing import Optional import torch import torch.nn as nn from einops import rearrange, repeat class PositionEmbeddingSine(nn.Module): def __init__( self, num_pos_feats=64, temperature=10000, normalize=False, scale=None ): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * pi self.scale = scale def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None ) -> torch.Tensor: if mask is None: mask = torch.zeros( (x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool ) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** ( 2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats ) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def __repr__(self, _repr_indent=4): head = "Positional encoding " + self.__class__.__name__ body = [ "num_pos_feats: {}".format(self.num_pos_feats), "temperature: {}".format(self.temperature), "normalize: {}".format(self.normalize), "scale: {}".format(self.scale), ] # _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines) class LearnedSinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() assert (dim % 2) == 0 half_dim = dim // 2 self.weights = nn.Parameter(torch.randn(half_dim)) def forward(self, x): x = rearrange(x, "b -> b 1") freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) fouriered = torch.cat((x, fouriered), dim=-1) return fouriered def generate_fourier_features(x, max_freq=64, num_bands=16): x = x.unsqueeze(-1) device, dtype, orig_x = x.device, x.dtype, x scales = torch.linspace( -max_freq / 2, max_freq / 2, num_bands, device=device, dtype=dtype ) scales = scales[(*((None,) * (len(x.shape) - 1)), Ellipsis)] x = x * scales * pi x = torch.cat([x.sin(), x.cos()], dim=-1) x = torch.cat((x, orig_x), dim=-1) return x.flatten(-2) def broadcat(tensors, dim=-1): num_tensors = len(tensors) shape_lens = set(list(map(lambda t: len(t.shape), tensors))) assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" shape_len = list(shape_lens)[0] dim = (dim + shape_len) if dim < 0 else dim dims = list(zip(*map(lambda t: list(t.shape), tensors))) expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] assert all( [*map(lambda t: len(set(t[1])) <= 2, expandable_dims)] ), "invalid dimensions for broadcastable concatentation" max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) expanded_dims.insert(dim, (dim, dims[dim])) expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) return torch.cat(tensors, dim=dim) def rotate_half(x): x = rearrange(x, "... (d r) -> ... d r", r=2) x1, x2 = x.unbind(dim=-1) x = torch.stack((-x2, x1), dim=-1) return rearrange(x, "... d r -> ... (d r)") class VisionRotaryEmbedding(nn.Module): def __init__( self, dim, pt_seq_len, ft_seq_len=None, custom_freqs=None, freqs_for="lang", theta=10000, max_freq=10, num_freqs=1, ): super().__init__() if custom_freqs: freqs = custom_freqs elif freqs_for == "lang": freqs = 1.0 / ( theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) ) elif freqs_for == "pixel": freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi elif freqs_for == "constant": freqs = torch.ones(num_freqs).float() else: raise ValueError(f"unknown modality {freqs_for}") if ft_seq_len is None: ft_seq_len = pt_seq_len t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len freqs_h = torch.einsum("..., f -> ... f", t, freqs) freqs_h = repeat(freqs_h, "... n -> ... (n r)", r=2) freqs_w = torch.einsum("..., f -> ... f", t, freqs) freqs_w = repeat(freqs_w, "... n -> ... (n r)", r=2) freqs = broadcat((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1) self.register_buffer("freqs_cos", freqs.cos()) self.register_buffer("freqs_sin", freqs.sin()) print("======== shape of rope freq", self.freqs_cos.shape, "========") def forward(self, t, start_index=0): rot_dim = self.freqs_cos.shape[-1] end_index = start_index + rot_dim assert ( rot_dim <= t.shape[-1] ), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" t_left, t, t_right = ( t[..., :start_index], t[..., start_index:end_index], t[..., end_index:], ) t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin) return torch.cat((t_left, t, t_right), dim=-1) class VisionRotaryEmbeddingFast(nn.Module): def __init__( self, dim, pt_seq_len, ft_seq_len=None, custom_freqs=None, freqs_for="lang", theta=10000, max_freq=10, num_freqs=1, ): super().__init__() if custom_freqs: freqs = custom_freqs elif freqs_for == "lang": freqs = 1.0 / ( theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) ) elif freqs_for == "pixel": freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi elif freqs_for == "constant": freqs = torch.ones(num_freqs).float() else: raise ValueError(f"unknown modality {freqs_for}") if ft_seq_len is None: ft_seq_len = pt_seq_len t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len freqs = torch.einsum("..., f -> ... f", t, freqs) freqs = repeat(freqs, "... n -> ... (n r)", r=2) freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1) freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) self.register_buffer("freqs_cos", freqs_cos) self.register_buffer("freqs_sin", freqs_sin) def forward(self, t): return t * self.freqs_cos + rotate_half(t) * self.freqs_sin