import torch import torch.nn as nn from unidepth.utils.misc import default from .activation import SwiGLU class MLP(nn.Module): def __init__( self, input_dim: int, expansion: int = 4, dropout: float = 0.0, gated: bool = False, output_dim: int | None = None, ): super().__init__() if gated: expansion = int(expansion * 2 / 3) hidden_dim = int(input_dim * expansion) output_dim = default(output_dim, input_dim) self.norm = nn.LayerNorm(input_dim) self.proj1 = nn.Linear(input_dim, hidden_dim) self.proj2 = nn.Linear(hidden_dim, output_dim) self.act = nn.GELU() if not gated else SwiGLU() self.dropout = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity() def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.norm(x) x = self.proj1(x) x = self.act(x) x = self.proj2(x) x = self.dropout(x) return x