Spaces:
Running
Running
""" | |
Author: Luigi Piccinelli | |
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) | |
""" | |
from typing import List, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from timm.models.layers import trunc_normal_ | |
from unidepth.layers import (MLP, AttentionBlock, ConvUpsample, NystromBlock, | |
PositionEmbeddingSine) | |
from unidepth.utils.geometric import flat_interpolate, generate_rays | |
from unidepth.utils.misc import max_stack | |
from unidepth.utils.sht import rsh_cart_8 | |
class ListAdapter(nn.Module): | |
def __init__(self, input_dims: List[int], hidden_dim: int): | |
super().__init__() | |
self.input_adapters = nn.ModuleList([]) | |
self.num_chunks = len(input_dims) | |
for input_dim in input_dims: | |
self.input_adapters.append( | |
nn.Sequential( | |
nn.LayerNorm(input_dim), nn.Linear(input_dim, hidden_dim), nn.GELU() | |
) | |
) | |
def forward(self, x: torch.Tensor, splits: torch.Tensor) -> torch.Tensor: | |
xs = torch.split(x, splits.int().tolist(), dim=-1) | |
xs = [adapter(x) for x, adapter in zip(xs, self.input_adapters)] | |
return torch.cat(xs, dim=-1) | |
class CameraHead(nn.Module): | |
def __init__( | |
self, | |
input_dim: int, | |
hidden_dim: int, | |
num_heads: int = 8, | |
expansion: int = 4, | |
depth: int = 4, | |
dropout: float = 0.0, | |
layer_scale: float = 1.0, | |
**kwargs, | |
): | |
super().__init__() | |
self.aggregate = AttentionBlock( | |
hidden_dim, | |
num_heads=1, | |
expansion=expansion, | |
dropout=dropout, | |
layer_scale=layer_scale, | |
) | |
self.latents_pos = nn.Parameter( | |
torch.randn(1, 4, hidden_dim), requires_grad=True | |
) | |
self.layers = nn.ModuleList([]) | |
self.in_features = MLP(hidden_dim, expansion=2, dropout=dropout) | |
for _ in range(depth): | |
blk = AttentionBlock( | |
hidden_dim, | |
num_heads=num_heads, | |
expansion=expansion, | |
dropout=dropout, | |
layer_scale=layer_scale, | |
) | |
self.layers.append(blk) | |
self.out = MLP(hidden_dim, expansion=2, dropout=0.0, output_dim=1) | |
self.cls_project = nn.Sequential( | |
nn.LayerNorm(input_dim), | |
nn.Linear(input_dim, hidden_dim // 2), | |
nn.GELU(), | |
nn.Linear(hidden_dim // 2, hidden_dim), | |
) | |
def forward(self, features, cls_tokens, pos_embed) -> torch.Tensor: | |
features = features.unbind(dim=-1) | |
cls_tokens = self.cls_project(cls_tokens) | |
features_stack = torch.cat(features, dim=1) | |
features_stack = features_stack + pos_embed | |
latents_pos = self.latents_pos.expand(cls_tokens.shape[0], -1, -1) | |
features_stack = self.in_features(features_stack) | |
features = torch.cat((features_stack, cls_tokens), dim=1) | |
cls_tokens = self.aggregate(cls_tokens, context=features, pos_embed=latents_pos) | |
for i, layer in enumerate(self.layers): | |
cls_tokens = layer(cls_tokens, pos_embed=latents_pos) | |
# project | |
x = self.out(cls_tokens).squeeze(-1) | |
camera_intrinsics = torch.zeros( | |
x.shape[0], 3, 3, device=x.device, requires_grad=False | |
) | |
camera_intrinsics[:, 0, 0] = x[:, 0].exp() | |
camera_intrinsics[:, 1, 1] = x[:, 1].exp() | |
camera_intrinsics[:, 0, 2] = x[:, 2].sigmoid() | |
camera_intrinsics[:, 1, 2] = x[:, 3].sigmoid() | |
camera_intrinsics[:, 2, 2] = 1.0 | |
return camera_intrinsics | |
def set_shapes(self, shapes: Tuple[int, int]): | |
self.shapes = shapes | |
class DepthHead(nn.Module): | |
def __init__( | |
self, | |
hidden_dim: int, | |
num_heads: int = 8, | |
expansion: int = 4, | |
depths: int | list[int] = 4, | |
camera_dim: int = 256, | |
num_resolutions: int = 4, | |
dropout: float = 0.0, | |
layer_scale: float = 1.0, | |
**kwargs, | |
) -> None: | |
super().__init__() | |
if isinstance(depths, int): | |
depths = [depths] * 3 | |
assert len(depths) == 3 | |
self.project_rays16 = MLP( | |
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim | |
) | |
self.project_rays8 = MLP( | |
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim // 2 | |
) | |
self.project_rays4 = MLP( | |
camera_dim, expansion=expansion, dropout=dropout, output_dim=hidden_dim // 4 | |
) | |
self.to_latents = MLP(hidden_dim, expansion=2, dropout=dropout) | |
self.features_channel_cat = nn.Linear(hidden_dim * num_resolutions, hidden_dim) | |
self.up8 = ConvUpsample( | |
hidden_dim, expansion=expansion, layer_scale=layer_scale | |
) | |
self.up4 = ConvUpsample( | |
hidden_dim // 2, expansion=expansion, layer_scale=layer_scale | |
) | |
self.up2 = ConvUpsample( | |
hidden_dim // 4, expansion=expansion, layer_scale=layer_scale | |
) | |
self.layers_16 = nn.ModuleList([]) | |
self.layers_8 = nn.ModuleList([]) | |
self.layers_4 = nn.ModuleList([]) | |
self.aggregate_16 = AttentionBlock( | |
hidden_dim, | |
num_heads=1, | |
expansion=expansion, | |
dropout=dropout, | |
layer_scale=layer_scale, | |
context_dim=hidden_dim, | |
) | |
self.prompt_camera = AttentionBlock( | |
hidden_dim, | |
num_heads=1, | |
expansion=expansion, | |
dropout=dropout, | |
layer_scale=layer_scale, | |
context_dim=hidden_dim, | |
) | |
for i, (blk_lst, depth) in enumerate( | |
zip([self.layers_16, self.layers_8, self.layers_4], depths) | |
): | |
attn_cls = AttentionBlock if i == 0 else NystromBlock | |
for _ in range(depth): | |
blk_lst.append( | |
attn_cls( | |
hidden_dim // (2**i), | |
num_heads=num_heads // (2**i), | |
expansion=expansion, | |
dropout=dropout, | |
layer_scale=layer_scale, | |
) | |
) | |
self.out2 = nn.Conv2d(hidden_dim // 8, 1, 3, padding=1) | |
self.out4 = nn.Conv2d(hidden_dim // 4, 1, 3, padding=1) | |
self.out8 = nn.Conv2d(hidden_dim // 2, 1, 3, padding=1) | |
def set_original_shapes(self, shapes: Tuple[int, int]): | |
self.original_shapes = shapes | |
def set_shapes(self, shapes: Tuple[int, int]): | |
self.shapes = shapes | |
def forward( | |
self, features: torch.Tensor, rays_hr: torch.Tensor, pos_embed, level_embed | |
) -> torch.Tensor: | |
features = features.unbind(dim=-1) | |
shapes = self.shapes | |
# camera_embedding | |
# torch.cuda.synchronize() | |
# start = time() | |
# print(f'shapes\n:{self.original_shapes, shapes})') | |
rays_embedding_16 = F.normalize( | |
flat_interpolate(rays_hr, old=self.original_shapes, new=shapes), dim=-1 | |
) | |
rays_embedding_8 = F.normalize( | |
flat_interpolate( | |
rays_hr, old=self.original_shapes, new=[x * 2 for x in shapes] | |
), | |
dim=-1, | |
) | |
rays_embedding_4 = F.normalize( | |
flat_interpolate( | |
rays_hr, old=self.original_shapes, new=[x * 4 for x in shapes] | |
), | |
dim=-1, | |
) | |
rays_embedding_16 = self.project_rays16(rsh_cart_8(rays_embedding_16)) | |
rays_embedding_8 = self.project_rays8(rsh_cart_8(rays_embedding_8)) | |
rays_embedding_4 = self.project_rays4(rsh_cart_8(rays_embedding_4)) | |
# torch.cuda.synchronize() | |
# print(f"camera_embedding took {time() - start} seconds") | |
features_tokens = torch.cat(features, dim=1) | |
features_tokens_pos = pos_embed + level_embed | |
# Generate latents with init as pooled features | |
features_channels = torch.cat(features, dim=-1) | |
features_16 = self.features_channel_cat(features_channels) | |
latents_16 = self.to_latents( | |
flat_interpolate(features_16, old=self.shapes, new=shapes, antialias=False) | |
) | |
# Aggregate features: F -> D | |
latents_16 = self.aggregate_16( | |
latents_16, context=features_tokens, pos_embed_context=features_tokens_pos | |
) | |
# Aggregate camera: D- > D|E | |
latents_16 = self.prompt_camera(latents_16, context=rays_embedding_16) | |
# Block 16 - Out 8 | |
for layer in self.layers_16: | |
latents_16 = layer(latents_16, pos_embed=rays_embedding_16) | |
latents_8 = self.up8( | |
rearrange( | |
latents_16 + rays_embedding_16, | |
"b (h w) c -> b c h w", | |
h=shapes[0], | |
w=shapes[1], | |
).contiguous() | |
) | |
out8 = self.out8( | |
rearrange( | |
latents_8, "b (h w) c -> b c h w", h=shapes[0] * 2, w=shapes[1] * 2 | |
) | |
) | |
# Block 8 - Out 4 | |
for layer in self.layers_8: | |
latents_8 = layer(latents_8, pos_embed=rays_embedding_8) | |
latents_4 = self.up4( | |
rearrange( | |
latents_8 + rays_embedding_8, | |
"b (h w) c -> b c h w", | |
h=shapes[0] * 2, | |
w=shapes[1] * 2, | |
).contiguous() | |
) | |
out4 = self.out4( | |
rearrange( | |
latents_4, "b (h w) c -> b c h w", h=shapes[0] * 4, w=shapes[1] * 4 | |
) | |
) | |
# Block 4 - Out 2 | |
for layer in self.layers_4: | |
latents_4 = layer(latents_4, pos_embed=rays_embedding_4) | |
latents_2 = self.up2( | |
rearrange( | |
latents_4 + rays_embedding_4, | |
"b (h w) c -> b c h w", | |
h=shapes[0] * 4, | |
w=shapes[1] * 4, | |
).contiguous() | |
) | |
out2 = self.out2( | |
rearrange( | |
latents_2, "b (h w) c -> b c h w", h=shapes[0] * 8, w=shapes[1] * 8 | |
) | |
) | |
# Depth features | |
proj_latents_16 = rearrange( | |
latents_16, "b (h w) c -> b c h w", h=shapes[0], w=shapes[1] | |
).contiguous() | |
# MS Outputs | |
out2 = out2.clamp(-10.0, 10.0).exp() | |
out4 = out4.clamp(-10.0, 10.0).exp() | |
out8 = out8.clamp(-10.0, 10.0).exp() | |
return out8, out4, out2, proj_latents_16 | |
class Decoder(nn.Module): | |
def __init__( | |
self, | |
config, | |
*args, | |
**kwargs, | |
): | |
super().__init__() | |
self.build(config) | |
self.apply(self._init_weights) | |
self.test_fixed_camera = False | |
self.skip_camera = False | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.Conv2d): | |
trunc_normal_(m.weight, std=0.02) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_adapted_features(self, features_flat, splits): | |
features_flat_cat = torch.cat(features_flat, dim=-1) | |
features_projected = self.input_adapter( | |
features_flat_cat, splits | |
) # list [b hw c] shapes | |
features = torch.chunk(features_projected, len(splits), dim=-1) | |
return features | |
def run_camera(self, cls_tokens, features, pos_embed, original_shapes, rays): | |
# get cls tokens projections | |
cls_tokens_splits = torch.tensor( | |
[x.shape[-1] for x in cls_tokens], | |
device=features.device, | |
requires_grad=False, | |
dtype=features.dtype, | |
) | |
cls_tokens = torch.cat(cls_tokens, dim=-1) | |
cls_tokens = self.token_adapter(cls_tokens, cls_tokens_splits) | |
cls_tokens = torch.cat( | |
torch.chunk(cls_tokens, len(cls_tokens_splits), dim=-1), dim=1 | |
) | |
# camera layer | |
intrinsics = self.camera_layer( | |
features=features, cls_tokens=cls_tokens, pos_embed=pos_embed | |
) | |
intrinsics[:, 0, 0] = max(original_shapes) / 2 * intrinsics[:, 0, 0] | |
intrinsics[:, 1, 1] = max(original_shapes) / 2 * intrinsics[:, 1, 1] | |
intrinsics[:, 0, 2] = intrinsics[:, 0, 2] * original_shapes[1] | |
intrinsics[:, 1, 2] = intrinsics[:, 1, 2] * original_shapes[0] | |
if not self.test_fixed_camera: | |
rays, _ = generate_rays(intrinsics, original_shapes, noisy=False) | |
return intrinsics, rays | |
def forward(self, inputs, image_metas) -> torch.Tensor: | |
B, _, H, W = inputs["image"].shape | |
device = inputs["image"].device | |
# make stride happy? | |
original_encoder_outputs = [x.contiguous() for x in inputs["encoder_outputs"]] | |
cls_tokens = [x.contiguous() for x in inputs["cls_tokens"]] | |
# collect features and tokens | |
original_encoder_outputs = [ | |
max_stack(original_encoder_outputs[i:j]) | |
for i, j in self.slices_encoder_range | |
] | |
cls_tokens = [cls_tokens[-i - 1] for i in range(len(self.slices_encoder_range))] | |
# get features in b n d format | |
# level shapes, the shape per level, for swin like [[128, 128], [64, 64],...], for vit [[32,32]] -> mult times resolutions | |
resolutions = [ | |
tuple(sorted([x.shape[1], x.shape[2]])) for x in original_encoder_outputs | |
] | |
level_shapes = sorted(list(set(resolutions)))[::-1] | |
if len(level_shapes) == 1: | |
level_shapes = level_shapes * self.num_resolutions | |
input_shapes = [ | |
level_shapes[i] | |
for i, (start, end) in enumerate(self.slices_encoder) | |
for _ in range(end - start) | |
] | |
common_shape = level_shapes[-2] | |
# input shapes repeat shapes for each level, times the amount of the layers: | |
features_flat = [ | |
flat_interpolate( | |
rearrange(x, "b h w c -> b (h w) c"), old=input_shape, new=common_shape | |
) | |
for x, input_shape in zip(original_encoder_outputs, input_shapes) | |
] | |
features_splits = torch.tensor( | |
[x.shape[-1] for x in features_flat], | |
device=device, | |
requires_grad=False, | |
dtype=torch.float32, | |
) | |
# input adapter, then do mean of features in same blocks | |
features = self.get_adapted_features(features_flat, features_splits) | |
features = torch.stack(features, dim=-1) | |
# positional embeddings, spatial and level | |
level_embed = torch.cat( | |
[ | |
self.level_embed_layer(self.level_embeds)[i : i + 1] | |
.unsqueeze(0) | |
.repeat(B, common_shape[0] * common_shape[1], 1) | |
for i in range(self.num_resolutions) | |
], | |
dim=1, | |
) | |
pos_embed = self.pos_embed( | |
torch.zeros( | |
B, | |
1, | |
common_shape[0], | |
common_shape[1], | |
device=device, | |
requires_grad=False, | |
) | |
) | |
pos_embed = rearrange(pos_embed, "b c h w -> b (h w) c").repeat( | |
1, self.num_resolutions, 1 | |
) | |
self.camera_layer.set_shapes(common_shape) | |
intrinsics, rays = ( | |
self.run_camera( | |
cls_tokens, | |
features=features, | |
pos_embed=pos_embed + level_embed, | |
original_shapes=(H, W), | |
rays=inputs.get("rays", None), | |
) | |
if not self.skip_camera | |
else (inputs["K"], inputs["rays"]) | |
) | |
# run bulk of the model | |
self.depth_layer.set_shapes(common_shape) | |
self.depth_layer.set_original_shapes((H, W)) | |
out8, out4, out2, depth_features = self.depth_layer( | |
features=features, | |
rays_hr=rays, | |
pos_embed=pos_embed, | |
level_embed=level_embed, | |
) | |
return intrinsics, [out8, out4, out2], depth_features | |
def no_weight_decay_keywords(self): | |
return {"latents_pos", "level_embeds"} | |
def build(self, config): | |
depth = config["model"]["pixel_decoder"]["depths"] | |
input_dims = config["model"]["pixel_encoder"]["embed_dims"] | |
hidden_dim = config["model"]["pixel_decoder"]["hidden_dim"] | |
num_heads = config["model"]["num_heads"] | |
expansion = config["model"]["expansion"] | |
dropout = config["model"]["pixel_decoder"]["dropout"] | |
depths_encoder = config["model"]["pixel_encoder"]["depths"] | |
num_steps = config["model"].get("num_steps", 100000) | |
layer_scale = 1.0 | |
self.depth = depth | |
self.dim = hidden_dim | |
self.downsample = 4 | |
self.num_heads = num_heads | |
self.num_resolutions = len(depths_encoder) | |
self.depths_encoder = depths_encoder | |
self.slices_encoder_single = list( | |
zip([d - 1 for d in self.depths_encoder], self.depths_encoder) | |
) | |
self.slices_encoder_range = list( | |
zip([0, *self.depths_encoder[:-1]], self.depths_encoder) | |
) | |
cls_token_input_dims = [input_dims[-i - 1] for i in range(len(depths_encoder))] | |
input_dims = [input_dims[d - 1] for d in depths_encoder] | |
self.slices_encoder = self.slices_encoder_single | |
# adapt from encoder features, just project | |
self.input_adapter = ListAdapter(input_dims, hidden_dim) | |
self.token_adapter = ListAdapter(cls_token_input_dims, hidden_dim) | |
# camera layer | |
self.camera_layer = CameraHead( | |
input_dim=hidden_dim, | |
hidden_dim=hidden_dim, | |
num_heads=num_heads, | |
expansion=expansion, | |
depth=2, | |
dropout=dropout, | |
layer_scale=layer_scale, | |
) | |
self.depth_layer = DepthHead( | |
hidden_dim=hidden_dim, | |
num_heads=num_heads, | |
expansion=expansion, | |
depths=depth, | |
dropout=dropout, | |
camera_dim=81, | |
num_resolutions=self.num_resolutions, | |
layer_scale=layer_scale, | |
) | |
# transformer part | |
self.pos_embed = PositionEmbeddingSine(hidden_dim // 2, normalize=True) | |
self.level_embeds = nn.Parameter( | |
torch.randn(len(input_dims), hidden_dim), requires_grad=True | |
) | |
self.level_embed_layer = nn.Sequential( | |
nn.Linear(hidden_dim, hidden_dim), | |
nn.GELU(), | |
nn.Linear(hidden_dim, hidden_dim), | |
nn.LayerNorm(hidden_dim), | |
) | |