Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from unidepth.models.backbones import ConvNeXt, ConvNeXtV2, _make_dinov2_model | |
class ModelWrap(nn.Module): | |
def __init__(self, model) -> None: | |
super().__init__() | |
self.backbone = model | |
def forward(self, x, *args, **kwargs): | |
features = [] | |
for layer in self.backbone.features: | |
x = layer(x) | |
features.append(x) | |
return features | |
def convnextv2_base(config, **kwargs): | |
model = ConvNeXtV2( | |
depths=[3, 3, 27, 3], | |
dims=[128, 256, 512, 1024], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config.get("use_checkpoint", False), | |
**kwargs, | |
) | |
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
)["model"] | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnextv2_large(config, **kwargs): | |
model = ConvNeXtV2( | |
depths=[3, 3, 27, 3], | |
dims=[192, 384, 768, 1536], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config.get("use_checkpoint", False), | |
**kwargs, | |
) | |
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
)["model"] | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnextv2_large_mae(config, **kwargs): | |
model = ConvNeXtV2( | |
depths=[3, 3, 27, 3], | |
dims=[192, 384, 768, 1536], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config.get("use_checkpoint", False), | |
**kwargs, | |
) | |
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_large_1k_224_fcmae.pt" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
)["model"] | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnextv2_huge(config, **kwargs): | |
model = ConvNeXtV2( | |
depths=[3, 3, 27, 3], | |
dims=[352, 704, 1408, 2816], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config.get("use_checkpoint", False), | |
**kwargs, | |
) | |
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
)["model"] | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnextv2_huge_mae(config, **kwargs): | |
model = ConvNeXtV2( | |
depths=[3, 3, 27, 3], | |
dims=[352, 704, 1408, 2816], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config.get("use_checkpoint", False), | |
**kwargs, | |
) | |
url = "https://dl.fbaipublicfiles.com/convnext/convnextv2/pt_only/convnextv2_huge_1k_224_fcmae.pt" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
)["model"] | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnext_large_pt(config, **kwargs): | |
model = ConvNeXt( | |
depths=[3, 3, 27, 3], | |
dims=[192, 384, 768, 1536], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config.get("use_checkpoint", False), | |
**kwargs, | |
) | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub.utils import disable_progress_bars | |
from unidepth.models.backbones.convnext import HF_URL, checkpoint_filter_fn | |
disable_progress_bars() | |
repo_id, filename = HF_URL["convnext_large_pt"] | |
state_dict = torch.load(hf_hub_download(repo_id=repo_id, filename=filename)) | |
state_dict = checkpoint_filter_fn(state_dict, model) | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
return model | |
def convnext_large(config, **kwargs): | |
model = ConvNeXt( | |
depths=[3, 3, 27, 3], | |
dims=[192, 384, 768, 1536], | |
output_idx=config.get("output_idx", [3, 6, 33, 36]), | |
use_checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
**kwargs, | |
) | |
return model | |
def dinov2_vits14(config, pretrained: bool = True, **kwargs): | |
""" | |
DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset. | |
""" | |
vit = _make_dinov2_model( | |
arch_name="vit_small", | |
pretrained=config["pretrained"], | |
output_idx=config.get("output_idx", [3, 6, 9, 12]), | |
checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
num_register_tokens=config.get("num_register_tokens", 0), | |
use_norm=config.get("use_norm", False), | |
export=config.get("export", False), | |
interpolate_offset=config.get("interpolate_offset", 0.0), | |
**kwargs, | |
) | |
return vit | |
def dinov2_vitb14(config, pretrained: bool = True, **kwargs): | |
""" | |
DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset. | |
""" | |
vit = _make_dinov2_model( | |
arch_name="vit_base", | |
pretrained=config["pretrained"], | |
output_idx=config.get("output_idx", [3, 6, 9, 12]), | |
checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
num_register_tokens=config.get("num_register_tokens", 0), | |
use_norm=config.get("use_norm", False), | |
export=config.get("export", False), | |
interpolate_offset=config.get("interpolate_offset", 0.0), | |
**kwargs, | |
) | |
return vit | |
def dinov2_vitl14(config, pretrained: str = "", **kwargs): | |
""" | |
DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset. | |
""" | |
vit = _make_dinov2_model( | |
arch_name="vit_large", | |
pretrained=config["pretrained"], | |
output_idx=config.get("output_idx", [5, 12, 18, 24]), | |
checkpoint=config.get("use_checkpoint", False), | |
drop_path_rate=config.get("drop_path", 0.0), | |
num_register_tokens=config.get("num_register_tokens", 0), | |
use_norm=config.get("use_norm", False), | |
export=config.get("export", False), | |
interpolate_offset=config.get("interpolate_offset", 0.0), | |
**kwargs, | |
) | |
return vit | |