Spaces:
Running
Running
""" | |
Author: Luigi Piccinelli | |
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) | |
""" | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from .convnext import CvnxtBlock | |
class ConvUpsample(nn.Module): | |
def __init__( | |
self, | |
hidden_dim, | |
num_layers: int = 2, | |
expansion: int = 4, | |
layer_scale: float = 1.0, | |
kernel_size: int = 7, | |
**kwargs, | |
): | |
super().__init__() | |
self.convs = nn.ModuleList([]) | |
for _ in range(num_layers): | |
self.convs.append( | |
CvnxtBlock( | |
hidden_dim, | |
kernel_size=kernel_size, | |
expansion=expansion, | |
layer_scale=layer_scale, | |
) | |
) | |
self.up = nn.Sequential( | |
nn.Conv2d(hidden_dim, hidden_dim // 2, kernel_size=1, padding=0), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
nn.Conv2d(hidden_dim // 2, hidden_dim // 2, kernel_size=3, padding=1), | |
) | |
def forward(self, x: torch.Tensor): | |
for conv in self.convs: | |
x = conv(x) | |
x = self.up(x) | |
x = rearrange(x, "b c h w -> b (h w) c") | |
return x | |
class ConvUpsampleShuffle(nn.Module): | |
def __init__( | |
self, | |
hidden_dim, | |
num_layers: int = 2, | |
expansion: int = 4, | |
layer_scale: float = 1.0, | |
kernel_size: int = 7, | |
**kwargs, | |
): | |
super().__init__() | |
self.convs = nn.ModuleList([]) | |
for _ in range(num_layers): | |
self.convs.append( | |
CvnxtBlock( | |
hidden_dim, | |
kernel_size=kernel_size, | |
expansion=expansion, | |
layer_scale=layer_scale, | |
) | |
) | |
self.up = nn.Sequential( | |
nn.PixelShuffle(2), | |
nn.Conv2d(hidden_dim // 4, hidden_dim // 2, kernel_size=3, padding=1), | |
) | |
def forward(self, x: torch.Tensor): | |
for conv in self.convs: | |
x = conv(x) | |
x = self.up(x) | |
x = rearrange(x, "b c h w -> b (h w) c") | |
return x | |
class ConvUpsampleShuffleResidual(nn.Module): | |
def __init__( | |
self, | |
hidden_dim, | |
num_layers: int = 2, | |
expansion: int = 4, | |
layer_scale: float = 1.0, | |
kernel_size: int = 7, | |
padding_mode: str = "zeros", | |
**kwargs, | |
): | |
super().__init__() | |
self.convs = nn.ModuleList([]) | |
for _ in range(num_layers): | |
self.convs.append( | |
CvnxtBlock( | |
hidden_dim, | |
kernel_size=kernel_size, | |
expansion=expansion, | |
layer_scale=layer_scale, | |
padding_mode=padding_mode, | |
) | |
) | |
self.up = nn.Sequential( | |
nn.PixelShuffle(2), | |
nn.Conv2d( | |
hidden_dim // 4, | |
hidden_dim // 4, | |
kernel_size=7, | |
padding=3, | |
padding_mode=padding_mode, | |
groups=hidden_dim // 4, | |
), | |
nn.ReLU(), | |
nn.Conv2d( | |
hidden_dim // 4, | |
hidden_dim // 2, | |
kernel_size=3, | |
padding=1, | |
padding_mode=padding_mode, | |
), | |
) | |
self.residual = nn.Sequential( | |
nn.Conv2d(hidden_dim, hidden_dim // 2, kernel_size=1, padding=0), | |
nn.UpsamplingBilinear2d(scale_factor=2), | |
) | |
def forward(self, x: torch.Tensor): | |
for conv in self.convs: | |
x = conv(x) | |
x = self.up(x) + self.residual(x) | |
x = rearrange(x, "b c h w -> b (h w) c") | |
return x | |