Spaces:
Running
Running
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from xformers.components.attention import NystromAttention | |
from .attention import AttentionBlock | |
class NystromBlock(AttentionBlock): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 4, | |
expansion: int = 4, | |
dropout: float = 0.0, | |
cosine: bool = False, | |
gated: bool = False, | |
layer_scale: float = 1.0, | |
context_dim: int | None = None, | |
): | |
super().__init__( | |
dim=dim, | |
num_heads=num_heads, | |
expansion=expansion, | |
dropout=dropout, | |
cosine=cosine, | |
gated=gated, | |
layer_scale=layer_scale, | |
context_dim=context_dim, | |
) | |
self.attention_fn = NystromAttention( | |
num_landmarks=128, num_heads=num_heads, dropout=dropout | |
) | |
def attn( | |
self, | |
x: torch.Tensor, | |
attn_bias: torch.Tensor | None = None, | |
context: torch.Tensor | None = None, | |
pos_embed: torch.Tensor | None = None, | |
pos_embed_context: torch.Tensor | None = None, | |
rope: nn.Module | None = None, | |
) -> torch.Tensor: | |
x = self.norm_attnx(x) | |
context = self.norm_attnctx(context) | |
k, v = rearrange( | |
self.kv(context), "b n (kv h d) -> b n h d kv", h=self.num_heads, kv=2 | |
).unbind(dim=-1) | |
q = rearrange(self.q(x), "b n (h d) -> b n h d", h=self.num_heads) | |
if rope is not None: | |
q = rope(q) | |
k = rope(k) | |
else: | |
if pos_embed is not None: | |
pos_embed = rearrange( | |
pos_embed, "b n (h d) -> b n h d", h=self.num_heads | |
) | |
q = q + pos_embed | |
if pos_embed_context is not None: | |
pos_embed_context = rearrange( | |
pos_embed_context, "b n (h d) -> b n h d", h=self.num_heads | |
) | |
k = k + pos_embed_context | |
if self.cosine: | |
q, k = map(partial(F.normalize, p=2, dim=-1), (q, k)) # cosine sim | |
x = self.attention_fn(q, k, v, key_padding_mask=attn_bias) | |
x = rearrange(x, "b n h d -> b n (h d)") | |
x = self.out(x) | |
return x | |