Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from unidepth.utils.misc import default | |
from .activation import SwiGLU | |
class MLP(nn.Module): | |
def __init__( | |
self, | |
input_dim: int, | |
expansion: int = 4, | |
dropout: float = 0.0, | |
gated: bool = False, | |
output_dim: int | None = None, | |
): | |
super().__init__() | |
if gated: | |
expansion = int(expansion * 2 / 3) | |
hidden_dim = int(input_dim * expansion) | |
output_dim = default(output_dim, input_dim) | |
self.norm = nn.LayerNorm(input_dim) | |
self.proj1 = nn.Linear(input_dim, hidden_dim) | |
self.proj2 = nn.Linear(hidden_dim, output_dim) | |
self.act = nn.GELU() if not gated else SwiGLU() | |
self.dropout = nn.Dropout(dropout) if dropout > 0.0 else nn.Identity() | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.norm(x) | |
x = self.proj1(x) | |
x = self.act(x) | |
x = self.proj2(x) | |
x = self.dropout(x) | |
return x | |