Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
def drop_path(x: torch.Tensor, drop_prob: float = 0.0, training: bool = False): | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * ( | |
x.ndim - 1 | |
) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0: | |
random_tensor.div_(keep_prob) | |
output = x * random_tensor | |
return output | |
class DropPath(nn.Module): | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |