Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
class CvnxtBlock(nn.Module): | |
def __init__( | |
self, | |
dim, | |
kernel_size=7, | |
layer_scale=1.0, | |
expansion=4, | |
dilation=1, | |
padding_mode: str = "zeros", | |
): | |
super().__init__() | |
self.dwconv = nn.Conv2d( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
padding=dilation * (kernel_size - 1) // 2, | |
groups=dim, | |
dilation=dilation, | |
padding_mode=padding_mode, | |
) # depthwise conv | |
self.norm = nn.LayerNorm(dim) | |
self.pwconv1 = nn.Linear(dim, expansion * dim) | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(expansion * dim, dim) | |
self.gamma = ( | |
nn.Parameter(layer_scale * torch.ones((dim))) if layer_scale > 0.0 else 1.0 | |
) | |
def forward(self, x): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
x = self.gamma * x | |
x = input + x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
return x | |