smhh24's picture
Upload 90 files
560b597 verified
raw
history blame
8.99 kB
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""
from typing import Tuple
import torch
from torch.nn import functional as F
@torch.jit.script
def generate_rays(
camera_intrinsics: torch.Tensor, image_shape: Tuple[int, int], noisy: bool = False
):
batch_size, device, dtype = (
camera_intrinsics.shape[0],
camera_intrinsics.device,
camera_intrinsics.dtype,
)
height, width = image_shape
# Generate grid of pixel coordinates
pixel_coords_x = torch.linspace(0, width - 1, width, device=device, dtype=dtype)
pixel_coords_y = torch.linspace(0, height - 1, height, device=device, dtype=dtype)
if noisy:
pixel_coords_x += torch.rand_like(pixel_coords_x) - 0.5
pixel_coords_y += torch.rand_like(pixel_coords_y) - 0.5
pixel_coords = torch.stack(
[pixel_coords_x.repeat(height, 1), pixel_coords_y.repeat(width, 1).t()], dim=2
) # (H, W, 2)
pixel_coords = pixel_coords + 0.5
# Calculate ray directions
intrinsics_inv = torch.eye(3, device=device).unsqueeze(0).repeat(batch_size, 1, 1)
intrinsics_inv[:, 0, 0] = 1.0 / camera_intrinsics[:, 0, 0]
intrinsics_inv[:, 1, 1] = 1.0 / camera_intrinsics[:, 1, 1]
intrinsics_inv[:, 0, 2] = -camera_intrinsics[:, 0, 2] / camera_intrinsics[:, 0, 0]
intrinsics_inv[:, 1, 2] = -camera_intrinsics[:, 1, 2] / camera_intrinsics[:, 1, 1]
homogeneous_coords = torch.cat(
[pixel_coords, torch.ones_like(pixel_coords[:, :, :1])], dim=2
) # (H, W, 3)
ray_directions = torch.matmul(
intrinsics_inv, homogeneous_coords.permute(2, 0, 1).flatten(1)
) # (3, H*W)
ray_directions = F.normalize(ray_directions, dim=1) # (B, 3, H*W)
ray_directions = ray_directions.permute(0, 2, 1) # (B, H*W, 3)
theta = torch.atan2(ray_directions[..., 0], ray_directions[..., -1])
phi = torch.acos(ray_directions[..., 1])
# pitch = torch.asin(ray_directions[..., 1])
# roll = torch.atan2(ray_directions[..., 0], - ray_directions[..., 1])
angles = torch.stack([theta, phi], dim=-1)
return ray_directions, angles
@torch.jit.script
def spherical_zbuffer_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
theta = spherical_tensor[..., 0] # Extract polar angle
phi = spherical_tensor[..., 1] # Extract azimuthal angle
z = spherical_tensor[..., 2] # Extract zbuffer depth
# y = r * cos(phi)
# x = r * sin(phi) * sin(theta)
# z = r * sin(phi) * cos(theta)
# =>
# r = z / sin(phi) / cos(theta)
# y = z / (sin(phi) / cos(phi)) / cos(theta)
# x = z * sin(theta) / cos(theta)
x = z * torch.tan(theta)
y = z / torch.tan(phi) / torch.cos(theta)
euclidean_tensor = torch.stack((x, y, z), dim=-1)
return euclidean_tensor
@torch.jit.script
def spherical_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
theta = spherical_tensor[..., 0] # Extract polar angle
phi = spherical_tensor[..., 1] # Extract azimuthal angle
r = spherical_tensor[..., 2] # Extract radius
# y = r * cos(phi)
# x = r * sin(phi) * sin(theta)
# z = r * sin(phi) * cos(theta)
x = r * torch.sin(phi) * torch.sin(theta)
y = r * torch.cos(phi)
z = r * torch.cos(theta) * torch.sin(phi)
euclidean_tensor = torch.stack((x, y, z), dim=-1)
return euclidean_tensor
@torch.jit.script
def euclidean_to_spherical(spherical_tensor: torch.Tensor) -> torch.Tensor:
x = spherical_tensor[..., 0] # Extract polar angle
y = spherical_tensor[..., 1] # Extract azimuthal angle
z = spherical_tensor[..., 2] # Extract radius
# y = r * cos(phi)
# x = r * sin(phi) * sin(theta)
# z = r * sin(phi) * cos(theta)
r = torch.sqrt(x**2 + y**2 + z**2)
theta = torch.atan2(x / r, z / r)
phi = torch.acos(y / r)
euclidean_tensor = torch.stack((theta, phi, r), dim=-1)
return euclidean_tensor
@torch.jit.script
def euclidean_to_spherical_zbuffer(euclidean_tensor: torch.Tensor) -> torch.Tensor:
pitch = torch.asin(euclidean_tensor[..., 1])
yaw = torch.atan2(euclidean_tensor[..., 0], euclidean_tensor[..., -1])
z = euclidean_tensor[..., 2] # Extract zbuffer depth
euclidean_tensor = torch.stack((pitch, yaw, z), dim=-1)
return euclidean_tensor
@torch.jit.script
def unproject_points(
depth: torch.Tensor, camera_intrinsics: torch.Tensor
) -> torch.Tensor:
"""
Unprojects a batch of depth maps to 3D point clouds using camera intrinsics.
Args:
depth (torch.Tensor): Batch of depth maps of shape (B, 1, H, W).
camera_intrinsics (torch.Tensor): Camera intrinsic matrix of shape (B, 3, 3).
Returns:
torch.Tensor: Batch of 3D point clouds of shape (B, 3, H, W).
"""
batch_size, _, height, width = depth.shape
device = depth.device
# Create pixel grid
y_coords, x_coords = torch.meshgrid(
torch.arange(height, device=device),
torch.arange(width, device=device),
indexing="ij",
)
pixel_coords = torch.stack((x_coords, y_coords), dim=-1) # (H, W, 2)
# Get homogeneous coords (u v 1)
pixel_coords_homogeneous = torch.cat(
(pixel_coords, torch.ones((height, width, 1), device=device)), dim=-1
)
pixel_coords_homogeneous = pixel_coords_homogeneous.permute(2, 0, 1).flatten(
1
) # (3, H*W)
# Apply K^-1 @ (u v 1): [B, 3, 3] @ [3, H*W] -> [B, 3, H*W]
unprojected_points = torch.matmul(
torch.inverse(camera_intrinsics), pixel_coords_homogeneous
) # (B, 3, H*W)
unprojected_points = unprojected_points.view(
batch_size, 3, height, width
) # (B, 3, H, W)
unprojected_points = unprojected_points * depth # (B, 3, H, W)
return unprojected_points
@torch.jit.script
def project_points(
points_3d: torch.Tensor,
intrinsic_matrix: torch.Tensor,
image_shape: Tuple[int, int],
) -> torch.Tensor:
# Project 3D points onto the image plane via intrinsics (u v w) = (x y z) @ K^T
points_2d = torch.matmul(points_3d, intrinsic_matrix.transpose(1, 2))
# Normalize projected points: (u v w) -> (u / w, v / w, 1)
points_2d = points_2d[..., :2] / points_2d[..., 2:]
points_2d = points_2d.int()
# points need to be inside the image (can it diverge onto all points out???)
valid_mask = (
(points_2d[..., 0] >= 0)
& (points_2d[..., 0] < image_shape[1])
& (points_2d[..., 1] >= 0)
& (points_2d[..., 1] < image_shape[0])
)
# Calculate the flat indices of the valid pixels
flat_points_2d = points_2d[..., 0] + points_2d[..., 1] * image_shape[1]
flat_indices = flat_points_2d.long()
# Create depth maps and counts using scatter_add, (B, H, W)
depth_maps = torch.zeros(
[points_3d.shape[0], *image_shape], device=points_3d.device
)
counts = torch.zeros([points_3d.shape[0], *image_shape], device=points_3d.device)
# Loop over batches to apply masks and accumulate depth/count values
for i in range(points_3d.shape[0]):
valid_indices = flat_indices[i, valid_mask[i]]
depth_maps[i].view(-1).scatter_add_(
0, valid_indices, points_3d[i, valid_mask[i], 2]
)
counts[i].view(-1).scatter_add_(
0, valid_indices, torch.ones_like(points_3d[i, valid_mask[i], 2])
)
# Calculate mean depth for each pixel in each batch
mean_depth_maps = depth_maps / counts.clamp(min=1.0)
return mean_depth_maps.reshape(-1, 1, *image_shape) # (B, 1, H, W)
@torch.jit.script
def downsample(data: torch.Tensor, downsample_factor: int = 2):
N, _, H, W = data.shape
data = data.view(
N,
H // downsample_factor,
downsample_factor,
W // downsample_factor,
downsample_factor,
1,
)
data = data.permute(0, 1, 3, 5, 2, 4).contiguous()
data = data.view(-1, downsample_factor * downsample_factor)
data_tmp = torch.where(data == 0.0, 1e5 * torch.ones_like(data), data)
data = torch.min(data_tmp, dim=-1).values
data = data.view(N, 1, H // downsample_factor, W // downsample_factor)
data = torch.where(data > 1000, torch.zeros_like(data), data)
return data
@torch.jit.script
def flat_interpolate(
flat_tensor: torch.Tensor,
old: Tuple[int, int],
new: Tuple[int, int],
antialias: bool = True,
mode: str = "bilinear",
) -> torch.Tensor:
if old[0] == new[0] and old[1] == new[1]:
return flat_tensor
tensor = flat_tensor.reshape(flat_tensor.shape[0], old[0], old[1], -1).permute(
0, 3, 1, 2
) # b c h w
tensor_interp = F.interpolate(
tensor,
size=(new[0], new[1]),
mode=mode,
align_corners=False,
antialias=antialias,
)
flat_tensor_interp = tensor_interp.reshape(
flat_tensor.shape[0], -1, new[0] * new[1]
).permute(
0, 2, 1
) # b (h w) c
return flat_tensor_interp.contiguous()