Spaces:
Running
Running
""" | |
Author: Luigi Piccinelli | |
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/) | |
""" | |
# We prefer not to install PyTorch3D in the package | |
# Code commented is how 3D metrics are computed | |
from collections import defaultdict | |
from functools import partial | |
import torch | |
import torch.nn.functional as F | |
from unidepth.utils.constants import DEPTH_BINS | |
# from chamfer_distance import ChamferDistance | |
# chamfer_cls = ChamferDistance() | |
# def chamfer_dist(tensor1, tensor2): | |
# x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device) | |
# y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device) | |
# dist1, dist2, idx1, idx2 = chamfer_cls( | |
# tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths | |
# ) | |
# return (torch.sqrt(dist1) + torch.sqrt(dist2)) / 2 | |
# def auc(tensor1, tensor2, thresholds): | |
# x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device) | |
# y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device) | |
# dist1, dist2, idx1, idx2 = chamfer_cls( | |
# tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths | |
# ) | |
# # compute precision recall | |
# precisions = [(dist1 < threshold).sum() / dist1.numel() for threshold in thresholds] | |
# recalls = [(dist2 < threshold).sum() / dist2.numel() for threshold in thresholds] | |
# auc_value = torch.trapz( | |
# torch.tensor(precisions, device=tensor1.device), | |
# torch.tensor(recalls, device=tensor1.device), | |
# ) | |
# return auc_value | |
def delta(tensor1, tensor2, exponent): | |
inlier = torch.maximum((tensor1 / tensor2), (tensor2 / tensor1)) | |
return (inlier < 1.25**exponent).to(torch.float32).mean() | |
def ssi(tensor1, tensor2, qtl=0.05): | |
stability_mat = 1e-9 * torch.eye(2, device=tensor1.device) | |
error = (tensor1 - tensor2).abs() | |
mask = error < torch.quantile(error, 1 - qtl) | |
tensor1_mask = tensor1[mask] | |
tensor2_mask = tensor2[mask] | |
tensor2_one = torch.stack( | |
[tensor2_mask.detach(), torch.ones_like(tensor2_mask).detach()], dim=1 | |
) | |
scale_shift = torch.inverse(tensor2_one.T @ tensor2_one + stability_mat) @ ( | |
tensor2_one.T @ tensor1_mask.unsqueeze(1) | |
) | |
scale, shift = scale_shift.squeeze().chunk(2, dim=0) | |
return tensor2 * scale + shift | |
# tensor2_one = torch.stack([tensor2.detach(), torch.ones_like(tensor2).detach()], dim=1) | |
# scale_shift = torch.inverse(tensor2_one.T @ tensor2_one + stability_mat) @ (tensor2_one.T @ tensor1.unsqueeze(1)) | |
# scale, shift = scale_shift.squeeze().chunk(2, dim=0) | |
# return tensor2 * scale + shift | |
def d1_ssi(tensor1, tensor2): | |
delta_ = delta(tensor1, ssi(tensor1, tensor2), 1.0) | |
return delta_ | |
def d_auc(tensor1, tensor2): | |
exponents = torch.linspace(0.01, 5.0, steps=100, device=tensor1.device) | |
deltas = [delta(tensor1, tensor2, exponent) for exponent in exponents] | |
return torch.trapz(torch.tensor(deltas, device=tensor1.device), exponents) / 5.0 | |
# def f1_score(tensor1, tensor2, thresholds): | |
# x_lengths = torch.tensor((tensor1.shape[1],), device=tensor1.device) | |
# y_lengths = torch.tensor((tensor2.shape[1],), device=tensor2.device) | |
# dist1, dist2, idx1, idx2 = chamfer_cls( | |
# tensor1, tensor2, x_lengths=x_lengths, y_lengths=y_lengths | |
# ) | |
# # compute precision recall | |
# precisions = [(dist1 < threshold).sum() / dist1.numel() for threshold in thresholds] | |
# recalls = [(dist2 < threshold).sum() / dist2.numel() for threshold in thresholds] | |
# precisions = torch.tensor(precisions, device=tensor1.device) | |
# recalls = torch.tensor(recalls, device=tensor1.device) | |
# f1_thresholds = 2 * precisions * recalls / (precisions + recalls) | |
# f1_thresholds = torch.where( | |
# torch.isnan(f1_thresholds), torch.zeros_like(f1_thresholds), f1_thresholds | |
# ) | |
# f1_value = torch.trapz(f1_thresholds) / len(thresholds) | |
# return f1_value | |
DICT_METRICS = { | |
"d1": partial(delta, exponent=1.0), | |
"d2": partial(delta, exponent=2.0), | |
"d3": partial(delta, exponent=3.0), | |
"rmse": lambda gt, pred: torch.sqrt(((gt - pred) ** 2).mean()), | |
"rmselog": lambda gt, pred: torch.sqrt( | |
((torch.log(gt) - torch.log(pred)) ** 2).mean() | |
), | |
"arel": lambda gt, pred: (torch.abs(gt - pred) / gt).mean(), | |
"sqrel": lambda gt, pred: (((gt - pred) ** 2) / gt).mean(), | |
"log10": lambda gt, pred: torch.abs(torch.log10(pred) - torch.log10(gt)).mean(), | |
"silog": lambda gt, pred: 100 * torch.std(torch.log(pred) - torch.log(gt)).mean(), | |
"medianlog": lambda gt, pred: 100 | |
* (torch.log(pred) - torch.log(gt)).median().abs(), | |
"d_auc": d_auc, | |
"d1_ssi": d1_ssi, | |
} | |
# DICT_METRICS_3D = { | |
# "chamfer": lambda gt, pred, thresholds: chamfer_dist( | |
# gt.unsqueeze(0).permute(0, 2, 1), pred.unsqueeze(0).permute(0, 2, 1) | |
# ), | |
# "F1": lambda gt, pred, thresholds: f1_score( | |
# gt.unsqueeze(0).permute(0, 2, 1), | |
# pred.unsqueeze(0).permute(0, 2, 1), | |
# thresholds=thresholds, | |
# ), | |
# } | |
DICT_METRICS_D = { | |
"a1": lambda gt, pred: (torch.maximum((gt / pred), (pred / gt)) > 1.25**1.0).to( | |
torch.float32 | |
), | |
"abs_rel": lambda gt, pred: (torch.abs(gt - pred) / gt), | |
} | |
def eval_depth( | |
gts: torch.Tensor, preds: torch.Tensor, masks: torch.Tensor, max_depth=None | |
): | |
summary_metrics = defaultdict(list) | |
preds = F.interpolate(preds, gts.shape[-2:], mode="bilinear") | |
for i, (gt, pred, mask) in enumerate(zip(gts, preds, masks)): | |
if max_depth is not None: | |
mask = torch.logical_and(mask, gt <= max_depth) | |
for name, fn in DICT_METRICS.items(): | |
summary_metrics[name].append(fn(gt[mask], pred[mask]).mean()) | |
return {name: torch.stack(vals, dim=0) for name, vals in summary_metrics.items()} | |
# def eval_3d( | |
# gts: torch.Tensor, preds: torch.Tensor, masks: torch.Tensor, thresholds=None | |
# ): | |
# summary_metrics = defaultdict(list) | |
# w_max = min(gts.shape[-1] // 4, 400) | |
# gts = F.interpolate( | |
# gts, (int(w_max * gts.shape[-2] / gts.shape[-1]), w_max), mode="nearest" | |
# ) | |
# preds = F.interpolate(preds, gts.shape[-2:], mode="nearest") | |
# masks = F.interpolate( | |
# masks.to(torch.float32), gts.shape[-2:], mode="nearest" | |
# ).bool() | |
# for i, (gt, pred, mask) in enumerate(zip(gts, preds, masks)): | |
# if not torch.any(mask): | |
# continue | |
# for name, fn in DICT_METRICS_3D.items(): | |
# summary_metrics[name].append( | |
# fn(gt[:, mask.squeeze()], pred[:, mask.squeeze()], thresholds).mean() | |
# ) | |
# return {name: torch.stack(vals, dim=0) for name, vals in summary_metrics.items()} | |