Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# References: | |
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py | |
import logging | |
from typing import Any, Callable, Dict, List, Tuple | |
import torch | |
import torch.nn as nn | |
from .attention import Attention, MemEffAttention | |
from .drop_path import DropPath | |
from .layer_scale import LayerScale | |
from .mlp import Mlp | |
logger = logging.getLogger("dinov2") | |
try: | |
from xformers.ops import fmha, index_select_cat, scaled_index_add | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
logger.warning("xFormers not available") | |
XFORMERS_AVAILABLE = False | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
ffn_bias: bool = True, | |
drop: float = 0.0, | |
attn_drop: float = 0.0, | |
init_values=None, | |
drop_path: float = 0.0, | |
act_layer: Callable[..., nn.Module] = nn.GELU, | |
norm_layer: Callable[..., nn.Module] = nn.LayerNorm, | |
attn_class: Callable[..., nn.Module] = Attention, | |
ffn_layer: Callable[..., nn.Module] = Mlp, | |
) -> None: | |
super().__init__() | |
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}") | |
self.norm1 = norm_layer(dim) | |
self.attn = attn_class( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
proj_bias=proj_bias, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
) | |
self.ls1 = ( | |
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
) | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = ffn_layer( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
bias=ffn_bias, | |
) | |
self.ls2 = ( | |
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
) | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.sample_drop_ratio = drop_path | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
def attn_residual_func(x: torch.Tensor) -> torch.Tensor: | |
return self.ls1(self.attn(self.norm1(x))) | |
def ffn_residual_func(x: torch.Tensor) -> torch.Tensor: | |
return self.ls2(self.mlp(self.norm2(x))) | |
if self.training and self.sample_drop_ratio > 0.1: | |
# the overhead is compensated only for a drop path rate larger than 0.1 | |
x = drop_add_residual_stochastic_depth( | |
x, | |
residual_func=attn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
) | |
x = drop_add_residual_stochastic_depth( | |
x, | |
residual_func=ffn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
) | |
elif self.training and self.sample_drop_ratio > 0.0: | |
x = x + self.drop_path1(attn_residual_func(x)) | |
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 | |
else: | |
x = x + attn_residual_func(x) | |
x = x + ffn_residual_func(x) | |
return x | |
def drop_add_residual_stochastic_depth( | |
x: torch.Tensor, | |
residual_func: Callable[[torch.Tensor], torch.Tensor], | |
sample_drop_ratio: float = 0.0, | |
) -> torch.Tensor: | |
# 1) extract subset using permutation | |
b, n, d = x.shape | |
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) | |
brange = (torch.randperm(b, device=x.device))[:sample_subset_size] | |
x_subset = x[brange] | |
# 2) apply residual_func to get residual | |
residual = residual_func(x_subset) | |
x_flat = x.flatten(1) | |
residual = residual.flatten(1) | |
residual_scale_factor = b / sample_subset_size | |
# 3) add the residual | |
x_plus_residual = torch.index_add( | |
x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor | |
) | |
return x_plus_residual.view_as(x) | |
def get_branges_scales(x, sample_drop_ratio=0.0): | |
b, n, d = x.shape | |
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) | |
brange = (torch.randperm(b, device=x.device))[:sample_subset_size] | |
residual_scale_factor = b / sample_subset_size | |
return brange, residual_scale_factor | |
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None): | |
if scaling_vector is None: | |
x_flat = x.flatten(1) | |
residual = residual.flatten(1) | |
x_plus_residual = torch.index_add( | |
x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor | |
) | |
else: | |
x_plus_residual = scaled_index_add( | |
x, | |
brange, | |
residual.to(dtype=x.dtype), | |
scaling=scaling_vector, | |
alpha=residual_scale_factor, | |
) | |
return x_plus_residual | |
attn_bias_cache: Dict[Tuple, Any] = {} | |
def get_attn_bias_and_cat(x_list, branges=None): | |
""" | |
this will perform the index select, cat the tensors, and provide the attn_bias from cache | |
""" | |
batch_sizes = ( | |
[b.shape[0] for b in branges] | |
if branges is not None | |
else [x.shape[0] for x in x_list] | |
) | |
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list)) | |
if all_shapes not in attn_bias_cache.keys(): | |
seqlens = [] | |
for b, x in zip(batch_sizes, x_list): | |
for _ in range(b): | |
seqlens.append(x.shape[1]) | |
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens) | |
attn_bias._batch_sizes = batch_sizes | |
attn_bias_cache[all_shapes] = attn_bias | |
if branges is not None: | |
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view( | |
1, -1, x_list[0].shape[-1] | |
) | |
else: | |
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list) | |
cat_tensors = torch.cat(tensors_bs1, dim=1) | |
return attn_bias_cache[all_shapes], cat_tensors | |
def drop_add_residual_stochastic_depth_list( | |
x_list: List[torch.Tensor], | |
residual_func: Callable[[torch.Tensor, Any], torch.Tensor], | |
sample_drop_ratio: float = 0.0, | |
scaling_vector=None, | |
) -> torch.Tensor: | |
# 1) generate random set of indices for dropping samples in the batch | |
branges_scales = [ | |
get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list | |
] | |
branges = [s[0] for s in branges_scales] | |
residual_scale_factors = [s[1] for s in branges_scales] | |
# 2) get attention bias and index+concat the tensors | |
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges) | |
# 3) apply residual_func to get residual, and split the result | |
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore | |
outputs = [] | |
for x, brange, residual, residual_scale_factor in zip( | |
x_list, branges, residual_list, residual_scale_factors | |
): | |
outputs.append( | |
add_residual( | |
x, brange, residual, residual_scale_factor, scaling_vector | |
).view_as(x) | |
) | |
return outputs | |
class NestedTensorBlock(Block): | |
def forward_nested(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]: | |
""" | |
x_list contains a list of tensors to nest together and run | |
""" | |
assert isinstance(self.attn, MemEffAttention) | |
if self.training and self.sample_drop_ratio > 0.0: | |
def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor: | |
return self.attn(self.norm1(x), attn_bias=attn_bias) | |
def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor: | |
return self.mlp(self.norm2(x)) | |
x_list = drop_add_residual_stochastic_depth_list( | |
x_list, | |
residual_func=attn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
scaling_vector=( | |
self.ls1.gamma if isinstance(self.ls1, LayerScale) else None | |
), | |
) | |
x_list = drop_add_residual_stochastic_depth_list( | |
x_list, | |
residual_func=ffn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
scaling_vector=( | |
self.ls2.gamma if isinstance(self.ls1, LayerScale) else None | |
), | |
) | |
return x_list | |
else: | |
def attn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor: | |
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias)) | |
def ffn_residual_func(x: torch.Tensor, attn_bias=None) -> torch.Tensor: | |
return self.ls2(self.mlp(self.norm2(x))) | |
attn_bias, x = get_attn_bias_and_cat(x_list) | |
x = x + attn_residual_func(x, attn_bias=attn_bias) | |
x = x + ffn_residual_func(x) | |
return attn_bias.split(x) | |
def forward(self, x_or_x_list): | |
if isinstance(x_or_x_list, torch.Tensor): | |
return super(NestedTensorBlock, self).forward(x_or_x_list) | |
elif isinstance(x_or_x_list, list): | |
assert ( | |
XFORMERS_AVAILABLE | |
), "Please install xFormers for nested tensors usage" | |
return self.forward_nested(x_or_x_list) | |
else: | |
raise AssertionError | |