Spaces:
Running
Running
import logging | |
import math | |
from functools import partial | |
from typing import Callable, Sequence | |
import torch | |
import torch.nn as nn | |
from torch.nn.init import trunc_normal_ | |
from .metadinov2 import Attention, MemEffAttention, Mlp | |
from .metadinov2 import NestedTensorBlock as Block | |
from .metadinov2 import PatchEmbed, SwiGLUFFNFused | |
_DINOV2_BASE_URL = "https://dl.fbaipublicfiles.com/dinov2" | |
logger = logging.getLogger("dinov2") | |
def named_apply( | |
fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False | |
) -> nn.Module: | |
if not depth_first and include_root: | |
fn(module=module, name=name) | |
for child_name, child_module in module.named_children(): | |
child_name = ".".join((name, child_name)) if name else child_name | |
named_apply( | |
fn=fn, | |
module=child_module, | |
name=child_name, | |
depth_first=depth_first, | |
include_root=True, | |
) | |
if depth_first and include_root: | |
fn(module=module, name=name) | |
return module | |
def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=()): | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
skip = {} | |
if skip_list is not None: | |
skip = skip_list | |
elif hasattr(model, "no_weight_decay"): | |
skip = model.no_weight_decay() | |
num_layers = model.n_blocks | |
layer_scale = list(ld ** (num_layers - i) for i in range(num_layers)) | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue | |
if len(param.shape) == 1: # norm | |
group_name = "no_decay" | |
this_wd = 0.0 | |
# layer scale, bias beta? | |
elif ( | |
name in skip | |
or name.endswith(".gamma") | |
or name.endswith(".beta") | |
or name.endswith(".bias") | |
): | |
group_name = "no_decay" | |
this_wd = 0.0 | |
elif "cls_token" in name or "pos_embed" in name or "mask_token" in name: | |
group_name = "no_decay" | |
this_wd = 0.0 | |
else: | |
group_name = "decay" | |
this_wd = wd | |
if name.startswith("blocks"): | |
layer_id = int(name.split(".")[1]) | |
elif name.startswith("patch_embed"): | |
layer_id = 0 | |
else: | |
layer_id = 0 | |
group_name = f"layer_{layer_id}_{group_name}" | |
if group_name not in parameter_group_names: | |
scale = layer_scale[layer_id] | |
cur_lr = lr * scale | |
parameter_group_names[group_name] = { | |
"weight_decay": this_wd, | |
"params": [], | |
"lr_init": cur_lr, | |
"lr_base": lr, | |
"lr": cur_lr, | |
} | |
parameter_group_vars[group_name] = { | |
"weight_decay": this_wd, | |
"params": [], | |
"lr_init": cur_lr, | |
"lr_base": lr, | |
"lr": cur_lr, | |
} | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
return list(parameter_group_vars.values()), [ | |
v["lr"] for k, v in parameter_group_vars.items() | |
] | |
class BlockChunk(nn.ModuleList): | |
def forward(self, x): | |
for b in self: | |
x = b(x) | |
return x | |
class DinoVisionTransformer(nn.Module): | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
ffn_bias=True, | |
proj_bias=True, | |
drop_path_rate=0.0, | |
drop_path_uniform=False, | |
init_values=None, # for layerscale: None or 0 => no layerscale | |
embed_layer=PatchEmbed, | |
act_layer=nn.GELU, | |
block_fn=Block, | |
ffn_layer="mlp", | |
block_chunks=1, | |
output_idx=[5, 12, 18, 24], | |
checkpoint: bool = False, | |
num_register_tokens=0, | |
interpolate_antialias=False, | |
interpolate_offset=0.0, | |
use_norm=False, | |
): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
proj_bias (bool): enable bias for proj in attn if True | |
ffn_bias (bool): enable bias for ffn if True | |
drop_path_rate (float): stochastic depth rate | |
drop_path_uniform (bool): apply uniform drop rate across blocks | |
weight_init (str): weight init scheme | |
init_values (float): layer-scale init values | |
embed_layer (nn.Module): patch embedding layer | |
act_layer (nn.Module): MLP activation layer | |
block_fn (nn.Module): transformer block class | |
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" | |
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap | |
""" | |
super().__init__() | |
norm_layer = partial(nn.LayerNorm, eps=1e-6) | |
self.num_features = self.embed_dim = ( | |
embed_dim # num_features for consistency with other models | |
) | |
self.embed_dims = [embed_dim] * output_idx[-1] | |
self.num_tokens = 1 | |
self.n_blocks = depth | |
self.num_heads = num_heads | |
self.patch_size = patch_size | |
self.depths = output_idx | |
self.checkpoint = checkpoint | |
self.num_register_tokens = num_register_tokens | |
self.interpolate_antialias = interpolate_antialias | |
self.interpolate_offset = interpolate_offset | |
self.patch_embed = embed_layer( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter( | |
torch.zeros(1, num_patches + self.num_tokens, embed_dim) | |
) | |
assert num_register_tokens >= 0 | |
self.register_tokens = nn.Parameter( | |
torch.zeros(1, max(1, num_register_tokens), embed_dim) | |
) | |
if drop_path_uniform is True: | |
dpr = [drop_path_rate] * depth | |
else: | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
if ffn_layer == "mlp": | |
logger.info("using MLP layer as FFN") | |
ffn_layer = Mlp | |
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": | |
logger.info("using SwiGLU layer as FFN") | |
ffn_layer = SwiGLUFFNFused | |
elif ffn_layer == "identity": | |
logger.info("using Identity layer as FFN") | |
def f(*args, **kwargs): | |
return nn.Identity() | |
ffn_layer = f | |
else: | |
raise NotImplementedError | |
blocks_list = [ | |
block_fn( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
proj_bias=proj_bias, | |
ffn_bias=ffn_bias, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
ffn_layer=ffn_layer, | |
init_values=init_values, | |
) | |
for i in range(depth) | |
] | |
if block_chunks > 0: | |
self.chunked_blocks = True | |
chunked_blocks = [] | |
chunksize = depth // block_chunks | |
for i in range(0, depth, chunksize): | |
# this is to keep the block index consistent if we chunk the block list | |
chunked_blocks.append( | |
[nn.Identity()] * i + blocks_list[i : i + chunksize] | |
) | |
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) | |
else: | |
self.chunked_blocks = False | |
self.blocks = nn.ModuleList(blocks_list) | |
self.norm = norm_layer(embed_dim) | |
self.use_norm = use_norm | |
self.head = nn.Identity() | |
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) | |
self.init_weights() | |
def init_weights(self): | |
trunc_normal_(self.pos_embed, std=0.02) | |
nn.init.normal_(self.cls_token, std=1e-6) | |
if self.num_register_tokens: | |
nn.init.normal_(self.register_tokens, std=1e-6) | |
named_apply(init_weights_vit_timm, self) | |
def interpolate_pos_encoding(self, x, w, h): | |
previous_dtype = x.dtype | |
npatch = x.shape[1] - 1 | |
N = self.pos_embed.shape[1] - 1 | |
if npatch == N and w == h: | |
return self.pos_embed | |
pos_embed = self.pos_embed.float() | |
class_pos_embed = pos_embed[:, 0] | |
patch_pos_embed = pos_embed[:, 1:] | |
dim = x.shape[-1] | |
w0 = w // self.patch_size | |
h0 = h // self.patch_size | |
M = int(math.sqrt(N)) # Recover the number of patches in each dimension | |
assert N == M * M | |
kwargs = {} | |
if self.interpolate_offset: | |
# Historical kludge: add a small number to avoid floating point error in the interpolation, see https://github.com/facebookresearch/dino/issues/8 | |
# Note: still needed for backward-compatibility, the underlying operators are using both output size and scale factors | |
sx = float(w0 + self.interpolate_offset) / M | |
sy = float(h0 + self.interpolate_offset) / M | |
kwargs["scale_factor"] = (sx, sy) | |
else: | |
# Simply specify an output size instead of a scale factor | |
kwargs["size"] = (w0, h0) | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2), | |
mode="bicubic", | |
antialias=self.interpolate_antialias, | |
**kwargs, | |
) | |
assert (w0, h0) == patch_pos_embed.shape[-2:] | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to( | |
previous_dtype | |
) | |
def prepare_tokens_with_masks(self, x, masks=None): | |
B, nc, w, h = x.shape | |
x = self.patch_embed(x) | |
if masks is not None: | |
masks = masks.bool().view(B, -1, 1) | |
x = torch.where(masks, self.mask_token.to(x.dtype).unsqueeze(0), x) | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = x + self.interpolate_pos_encoding(x, w, h) | |
if self.num_register_tokens: | |
x = torch.cat( | |
(x[:, :1], self.register_tokens.expand(x.shape[0], -1, -1), x[:, 1:]), | |
dim=1, | |
) | |
return x | |
def forward(self, x, masks=None): | |
shapes = [val // self.patch_size for val in x.shape[-2:]] | |
batch_size = x.shape[0] | |
x = self.prepare_tokens_with_masks(x, masks) | |
outputs = [] | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
outputs.append(x) | |
if self.use_norm: | |
outputs = [self.norm(out) for out in outputs] | |
class_tokens = [out[:, :1] for out in outputs] | |
outputs = [out[:, self.num_register_tokens + 1 :] for out in outputs] | |
outputs = [out.reshape(batch_size, *shapes, -1) for out in outputs] | |
return (outputs, class_tokens) | |
def get_params(self, lr, wd, ld, *args, **kwargs): | |
encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld) | |
return encoder_p, encoder_lr | |
def freeze(self) -> None: | |
for module in self.modules(): | |
module.eval() | |
for parameters in self.parameters(): | |
parameters.requires_grad = False | |
def train(self, mode=True): | |
super().train(mode) | |
self.mask_token.requires_grad = False | |
self.register_tokens.requires_grad = False | |
def init_weights_vit_timm(module: nn.Module, name: str = ""): | |
"""ViT weight initialization, original timm impl (for reproducibility)""" | |
if isinstance(module, nn.Linear): | |
trunc_normal_(module.weight, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
def vit_small(patch_size=16, num_register_tokens=0, export=False, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=384, | |
depth=12, | |
num_heads=6, | |
mlp_ratio=4, | |
num_register_tokens=num_register_tokens, | |
block_fn=partial(Block, attn_class=Attention if export else MemEffAttention), | |
**kwargs, | |
) | |
return model | |
def vit_base(patch_size=16, num_register_tokens=0, export=False, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
num_register_tokens=num_register_tokens, | |
block_fn=partial(Block, attn_class=Attention if export else MemEffAttention), | |
**kwargs, | |
) | |
return model | |
def vit_large(patch_size=16, num_register_tokens=0, export=False, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
num_register_tokens=num_register_tokens, | |
block_fn=partial(Block, attn_class=Attention if export else MemEffAttention), | |
**kwargs, | |
) | |
return model | |
def _make_dinov2_model_name(arch_name: str, patch_size: int) -> str: | |
compact_arch_name = arch_name.replace("_", "")[:4] | |
return f"dinov2_{compact_arch_name}{patch_size}" | |
def _make_dinov2_model( | |
*, | |
arch_name: str = "vit_large", | |
img_size: int = 518, | |
patch_size: int = 14, | |
init_values: float = 1.0, | |
ffn_layer: str = "mlp", | |
block_chunks: int = 0, | |
pretrained: str = "", | |
output_idx: Sequence[int] = [], | |
num_register_tokens: int = 0, | |
drop_path_rate: float = 0.0, | |
use_norm: bool = False, | |
export: bool = False, | |
interpolate_offset: float = 0.0, | |
**kwargs, | |
): | |
model_name = _make_dinov2_model_name(arch_name, patch_size) | |
vit_kwargs = dict( | |
img_size=img_size, | |
patch_size=patch_size, | |
init_values=init_values, | |
ffn_layer=ffn_layer, | |
block_chunks=block_chunks, | |
output_idx=output_idx, | |
drop_path_rate=drop_path_rate, | |
num_register_tokens=num_register_tokens, | |
use_norm=use_norm, | |
export=export, | |
interpolate_offset=interpolate_offset, | |
) | |
vit_kwargs.update(**kwargs) | |
model = eval(arch_name)(**vit_kwargs) | |
if pretrained == "": | |
url = _DINOV2_BASE_URL + f"/{model_name}/{model_name}" | |
if num_register_tokens > 0: | |
url += "_reg4" | |
url += "_pretrain.pth" | |
state_dict = torch.hub.load_state_dict_from_url( | |
url, map_location="cpu", progress=False | |
) | |
info = model.load_state_dict(state_dict, strict=False) | |
print(info) | |
elif pretrained is not None: | |
state_dict = torch.load(pretrained, map_location="cpu") | |
info = model.load_state_dict(state_dict, strict=False) | |
print(f"loading from {pretrained} with:", info) | |
return model | |