Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.models.layers import DropPath, trunc_normal_ | |
def get_num_layer_for_convnext_single(var_name, depths): | |
""" | |
Each layer is assigned distinctive layer ids | |
""" | |
if var_name.startswith("downsample_layers"): | |
stage_id = int(var_name.split(".")[1]) | |
layer_id = sum(depths[:stage_id]) + 1 | |
return layer_id | |
elif var_name.startswith("stages"): | |
stage_id = int(var_name.split(".")[1]) | |
block_id = int(var_name.split(".")[2]) | |
layer_id = sum(depths[:stage_id]) + block_id + 1 | |
return layer_id | |
else: | |
return sum(depths) + 1 | |
def get_num_layer_for_convnext(var_name): | |
""" | |
Divide [3, 3, 27, 3] layers into 12 groups; each group is three | |
consecutive blocks, including possible neighboring downsample layers; | |
adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py | |
""" | |
num_max_layer = 12 | |
if var_name.startswith("downsample_layers"): | |
stage_id = int(var_name.split(".")[1]) | |
if stage_id == 0: | |
layer_id = 0 | |
elif stage_id == 1 or stage_id == 2: | |
layer_id = stage_id + 1 | |
elif stage_id == 3: | |
layer_id = 12 | |
return layer_id | |
elif var_name.startswith("stages"): | |
stage_id = int(var_name.split(".")[1]) | |
block_id = int(var_name.split(".")[2]) | |
if stage_id == 0 or stage_id == 1: | |
layer_id = stage_id + 1 | |
elif stage_id == 2: | |
layer_id = 3 + block_id // 3 | |
elif stage_id == 3: | |
layer_id = 12 | |
return layer_id | |
else: | |
return num_max_layer + 1 | |
def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=()): | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
skip = {} | |
if skip_list is not None: | |
skip = skip_list | |
elif hasattr(model, "no_weight_decay"): | |
skip = model.no_weight_decay() | |
num_layers = 12 # sum(model.depths) | |
layer_scale = list(ld ** (num_layers + 1 - i) for i in range(num_layers + 2)) | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
if ( | |
len(param.shape) == 1 | |
or name.endswith(".bias") | |
or name in skip | |
or name.endswith(".gamma") | |
or name.endswith(".beta") | |
): | |
group_name = "no_decay" | |
this_weight_decay = 0.0 | |
else: | |
group_name = "decay" | |
this_weight_decay = wd | |
# layer_id = get_num_layer_for_convnext_single(name, model.depths) | |
layer_id = get_num_layer_for_convnext(name) | |
group_name = "layer_%d_%s" % (layer_id, group_name) | |
if group_name not in parameter_group_names: | |
scale = layer_scale[layer_id] | |
cur_lr = lr * scale | |
parameter_group_names[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale, | |
"lr": cur_lr, | |
} | |
parameter_group_vars[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale, | |
"lr": cur_lr, | |
} | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
# if is_main_process(): | |
# print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
return list(parameter_group_vars.values()), [ | |
v["lr"] for k, v in parameter_group_vars.items() | |
] | |
class LayerNorm(nn.Module): | |
"""LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
""" | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape,) | |
def forward(self, x): | |
if self.data_format == "channels_last": | |
return F.layer_norm( | |
x, self.normalized_shape, self.weight, self.bias, self.eps | |
) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class GRN(nn.Module): | |
"""GRN (Global Response Normalization) layer""" | |
def __init__(self, dim): | |
super().__init__() | |
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) | |
def forward(self, x): | |
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) | |
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) | |
return self.gamma * (x * Nx) + self.beta + x | |
class Block(nn.Module): | |
"""ConvNeXtV2 Block. | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
""" | |
def __init__(self, dim, drop_path=0.0, mult=4, use_checkpoint=False): | |
super().__init__() | |
self.dwconv = nn.Conv2d( | |
dim, dim, kernel_size=7, padding=3, groups=dim | |
) # depthwise conv | |
self.norm = LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear( | |
dim, mult * dim | |
) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.grn = GRN(mult * dim) | |
self.pwconv2 = nn.Linear(mult * dim, dim) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.use_checkpoint = use_checkpoint | |
def forward(self, x): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.grn(x) | |
x = self.pwconv2(x) | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = input + self.drop_path(x) | |
return x | |
class ConvNeXtV2(nn.Module): | |
"""ConvNeXt V2 | |
Args: | |
in_chans (int): Number of input image channels. Default: 3 | |
num_classes (int): Number of classes for classification head. Default: 1000 | |
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] | |
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] | |
drop_path_rate (float): Stochastic depth rate. Default: 0. | |
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. | |
""" | |
def __init__( | |
self, | |
in_chans=3, | |
depths=[3, 3, 9, 3], | |
dims=96, | |
drop_path_rate=0.0, | |
output_idx=[], | |
use_checkpoint=False, | |
): | |
super().__init__() | |
self.num_layers = len(depths) | |
self.depths = output_idx | |
self.embed_dims = [ | |
int(dim) for i, dim in enumerate(dims) for _ in range(depths[i]) | |
] | |
self.embed_dim = dims[0] | |
self.downsample_layers = ( | |
nn.ModuleList() | |
) # stem and 3 intermediate downsampling conv layers | |
stem = nn.Sequential( | |
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), | |
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"), | |
) | |
self.downsample_layers.append(stem) | |
for i in range(3): | |
downsample_layer = nn.Sequential( | |
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2), | |
) | |
self.downsample_layers.append(downsample_layer) | |
self.stages = ( | |
nn.ModuleList() | |
) # 4 feature resolution stages, each consisting of multiple residual blocks | |
self.out_norms = nn.ModuleList() | |
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
cur = 0 | |
for i in range(4): | |
stage = nn.ModuleList( | |
[ | |
Block( | |
dim=dims[i], | |
drop_path=dp_rates[cur + j], | |
use_checkpoint=use_checkpoint, | |
) | |
for j in range(depths[i]) | |
] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv2d, nn.Linear)): | |
trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
outs = [] | |
for i in range(4): | |
x = self.downsample_layers[i](x) | |
for stage in self.stages[i]: | |
x = stage(x) | |
outs.append(x.permute(0, 2, 3, 1)) | |
cls_tokens = [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in outs] | |
return outs, cls_tokens | |
def get_params(self, lr, wd, ld, *args, **kwargs): | |
encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld) | |
return encoder_p, encoder_lr | |
def freeze(self) -> None: | |
for module in self.modules(): | |
module.eval() | |
for parameters in self.parameters(): | |
parameters.requires_grad = False | |
def build(cls, config): | |
obj = globals()[config["model"]["encoder"]["name"]](config) | |
return obj | |