Spaces:
Running
Running
from collections import OrderedDict | |
from functools import partial | |
from typing import Callable, Optional, Sequence, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from timm.layers import (AvgPool2dSame, DropPath, GlobalResponseNormMlp, | |
LayerNorm, LayerNorm2d, Mlp, create_conv2d, | |
get_act_layer, make_divisible, to_ntuple, | |
trunc_normal_) | |
from torch.utils.checkpoint import checkpoint | |
def get_num_layer_for_convnext(var_name): | |
""" | |
Divide [3, 3, 27, 3] layers into 12 groups; each group is three | |
consecutive blocks, including possible neighboring downsample layers; | |
adapted from https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py | |
""" | |
if var_name.startswith("downsample_layers"): | |
stage_id = int(var_name.split(".")[1]) | |
if stage_id == 0: | |
layer_id = 0 | |
elif stage_id == 1 or stage_id == 2: | |
layer_id = stage_id + 1 | |
elif stage_id == 3: | |
layer_id = 12 | |
elif var_name.startswith("stages"): | |
stage_id = int(var_name.split(".")[1]) | |
block_id = int(var_name.split(".")[3]) | |
if stage_id == 0 or stage_id == 1: | |
layer_id = stage_id + 1 | |
elif stage_id == 2: | |
layer_id = 3 + block_id // 3 | |
elif stage_id == 3: | |
layer_id = 12 | |
elif var_name.startswith("stem"): | |
return 0 | |
else: | |
layer_id = 12 | |
return layer_id + 1 | |
def get_parameter_groups(model, lr, wd=1e-5, ld=0.9, skip_list=None): | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
skip = set() | |
if skip_list is not None: | |
skip = skip_list | |
if hasattr(model, "no_weight_decay"): | |
skip.update(model.no_weight_decay()) | |
num_layers = 12 | |
layer_scale = list(ld ** (num_layers + 1 - i) for i in range(num_layers + 2)) | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
if len(param.shape) == 1 or name.endswith(".bias") or name in skip: | |
group_name = "no_decay" | |
this_wd = 0.0 | |
else: | |
group_name = "decay" | |
this_wd = wd | |
layer_id = get_num_layer_for_convnext(name) | |
group_name = "layer_%d_%s" % (layer_id, group_name) | |
if group_name not in parameter_group_names: | |
scale = layer_scale[layer_id] | |
cur_lr = lr * scale | |
parameter_group_names[group_name] = { | |
"weight_decay": this_wd, | |
"weight_decay_init": this_wd, | |
"weight_decay_base": this_wd, | |
"params": [], | |
"lr_init": cur_lr, | |
"lr_base": lr, | |
"lr": cur_lr, | |
} | |
parameter_group_vars[group_name] = { | |
"weight_decay": this_wd, | |
"weight_decay_init": this_wd, | |
"weight_decay_base": this_wd, | |
"params": [], | |
"lr_init": cur_lr, | |
"lr_base": lr, | |
"lr": cur_lr, | |
} | |
if this_wd == 0.0: | |
parameter_group_names[group_name]["weight_decay_final"] = 0.0 | |
parameter_group_vars[group_name]["weight_decay_final"] = 0.0 | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
# from unidepth.utils import is_main_process | |
# import json | |
# if is_main_process(): | |
# print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
return list(parameter_group_vars.values()), [ | |
v["lr"] for k, v in parameter_group_vars.items() | |
] | |
class Downsample(nn.Module): | |
def __init__(self, in_chs, out_chs, stride=1, dilation=1): | |
super().__init__() | |
avg_stride = stride if dilation == 1 else 1 | |
if stride > 1 or dilation > 1: | |
avg_pool_fn = ( | |
AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d | |
) | |
self.pool = avg_pool_fn( | |
2, avg_stride, ceil_mode=True, count_include_pad=False | |
) | |
else: | |
self.pool = nn.Identity() | |
if in_chs != out_chs: | |
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1) | |
else: | |
self.conv = nn.Identity() | |
def forward(self, x): | |
x = self.pool(x) | |
x = self.conv(x) | |
return x | |
class ConvNeXtBlock(nn.Module): | |
"""ConvNeXt Block | |
There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate | |
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear | |
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. | |
""" | |
def __init__( | |
self, | |
in_chs: int, | |
out_chs: Optional[int] = None, | |
kernel_size: int = 7, | |
stride: int = 1, | |
dilation: Union[int, Tuple[int, int]] = (1, 1), | |
mlp_ratio: float = 4, | |
conv_mlp: bool = False, | |
conv_bias: bool = True, | |
use_grn: bool = False, | |
ls_init_value: Optional[float] = 1e-6, | |
act_layer: Union[str, Callable] = "gelu", | |
norm_layer: Optional[Callable] = None, | |
drop_path: float = 0.0, | |
): | |
""" | |
Args: | |
in_chs: Block input channels. | |
out_chs: Block output channels (same as in_chs if None). | |
kernel_size: Depthwise convolution kernel size. | |
stride: Stride of depthwise convolution. | |
dilation: Tuple specifying input and output dilation of block. | |
mlp_ratio: MLP expansion ratio. | |
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True. | |
conv_bias: Apply bias for all convolution (linear) layers. | |
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2) | |
ls_init_value: Layer-scale init values, layer-scale applied if not None. | |
act_layer: Activation layer. | |
norm_layer: Normalization layer (defaults to LN if not specified). | |
drop_path: Stochastic depth probability. | |
""" | |
super().__init__() | |
out_chs = out_chs or in_chs | |
dilation = to_ntuple(2)(dilation) | |
act_layer = get_act_layer(act_layer) | |
if not norm_layer: | |
norm_layer = LayerNorm2d if conv_mlp else LayerNorm | |
mlp_layer = partial( | |
GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp | |
) | |
self.use_conv_mlp = conv_mlp | |
self.conv_dw = create_conv2d( | |
in_chs, | |
out_chs, | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation[0], | |
depthwise=True, | |
bias=conv_bias, | |
) | |
self.norm = norm_layer(out_chs) | |
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer) | |
self.gamma = ( | |
nn.Parameter(ls_init_value * torch.ones(out_chs)) | |
if ls_init_value is not None | |
else None | |
) | |
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: | |
self.shortcut = Downsample( | |
in_chs, out_chs, stride=stride, dilation=dilation[0] | |
) | |
else: | |
self.shortcut = nn.Identity() | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
def forward(self, x): | |
shortcut = x | |
x = self.conv_dw(x.contiguous()) | |
if self.use_conv_mlp: | |
x = self.norm(x) | |
x = self.mlp(x) | |
else: | |
x = x.permute(0, 2, 3, 1).contiguous() | |
x = self.norm(x) | |
x = self.mlp(x) | |
x = x.permute(0, 3, 1, 2).contiguous() | |
if self.gamma is not None: | |
x = x.mul(self.gamma.reshape(1, -1, 1, 1)) | |
x = self.drop_path(x) + self.shortcut(shortcut) | |
return x.contiguous() | |
class ConvNeXtStage(nn.Module): | |
def __init__( | |
self, | |
in_chs, | |
out_chs, | |
kernel_size=7, | |
stride=2, | |
depth=2, | |
dilation=(1, 1), | |
drop_path_rates=None, | |
ls_init_value=1.0, | |
conv_mlp=False, | |
conv_bias=True, | |
use_grn=False, | |
act_layer="gelu", | |
norm_layer=None, | |
norm_layer_cl=None, | |
): | |
super().__init__() | |
self.grad_checkpointing = False | |
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]: | |
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1 | |
pad = ( | |
"same" if dilation[1] > 1 else 0 | |
) # same padding needed if dilation used | |
self.downsample = nn.Sequential( | |
norm_layer(in_chs), | |
create_conv2d( | |
in_chs, | |
out_chs, | |
kernel_size=ds_ks, | |
stride=stride, | |
dilation=dilation[0], | |
padding=pad, | |
bias=conv_bias, | |
), | |
) | |
in_chs = out_chs | |
else: | |
self.downsample = nn.Identity() | |
drop_path_rates = drop_path_rates or [0.0] * depth | |
stage_blocks = [] | |
for i in range(depth): | |
stage_blocks.append( | |
ConvNeXtBlock( | |
in_chs=in_chs, | |
out_chs=out_chs, | |
kernel_size=kernel_size, | |
dilation=dilation[1], | |
drop_path=drop_path_rates[i], | |
ls_init_value=ls_init_value, | |
conv_mlp=conv_mlp, | |
conv_bias=conv_bias, | |
use_grn=use_grn, | |
act_layer=act_layer, | |
norm_layer=norm_layer if conv_mlp else norm_layer_cl, | |
) | |
) | |
in_chs = out_chs | |
self.blocks = nn.ModuleList(stage_blocks) | |
def forward(self, x): | |
xs = [] | |
x = self.downsample(x) | |
for block in self.blocks: | |
if self.grad_checkpointing: | |
x = checkpoint(block, x) | |
else: | |
x = block(x) | |
xs.append(x) | |
return xs | |
class ConvNeXt(nn.Module): | |
def __init__( | |
self, | |
in_chans: int = 3, | |
output_stride: int = 32, | |
depths: Tuple[int, ...] = (3, 3, 9, 3), | |
dims: Tuple[int, ...] = (96, 192, 384, 768), | |
kernel_sizes: Union[int, Tuple[int, ...]] = 7, | |
ls_init_value: Optional[float] = 1e-6, | |
stem_type: str = "patch", | |
patch_size: int = 4, | |
conv_mlp: bool = False, | |
conv_bias: bool = True, | |
use_grn: bool = False, | |
act_layer: Union[str, Callable] = "gelu", | |
norm_layer: Optional[Union[str, Callable]] = None, | |
norm_eps: Optional[float] = None, | |
drop_path_rate: float = 0.0, | |
output_idx=[], | |
use_checkpoint=False, | |
): | |
""" | |
Args: | |
in_chans: Number of input image channels. | |
num_classes: Number of classes for classification head. | |
global_pool: Global pooling type. | |
output_stride: Output stride of network, one of (8, 16, 32). | |
depths: Number of blocks at each stage. | |
dims: Feature dimension at each stage. | |
kernel_sizes: Depthwise convolution kernel-sizes for each stage. | |
ls_init_value: Init value for Layer Scale, disabled if None. | |
stem_type: Type of stem. | |
patch_size: Stem patch size for patch stem. | |
head_init_scale: Init scaling value for classifier weights and biases. | |
head_norm_first: Apply normalization before global pool + head. | |
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False. | |
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last. | |
conv_bias: Use bias layers w/ all convolutions. | |
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP. | |
act_layer: Activation layer type. | |
norm_layer: Normalization layer type. | |
drop_rate: Head pre-classifier dropout rate. | |
drop_path_rate: Stochastic depth drop rate. | |
""" | |
super().__init__() | |
self.num_layers = len(depths) | |
self.depths = output_idx | |
self.embed_dims = [ | |
int(dim) for i, dim in enumerate(dims) for _ in range(depths[i]) | |
] | |
self.embed_dim = dims[0] | |
assert output_stride in (8, 16, 32) | |
kernel_sizes = to_ntuple(4)(kernel_sizes) | |
if norm_layer is None: | |
norm_layer = LayerNorm2d | |
norm_layer_cl = norm_layer if conv_mlp else LayerNorm | |
if norm_eps is not None: | |
norm_layer = partial(norm_layer, eps=norm_eps) | |
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) | |
else: | |
assert ( | |
conv_mlp | |
), "If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input" | |
norm_layer_cl = norm_layer | |
if norm_eps is not None: | |
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) | |
self.feature_info = [] | |
assert stem_type in ("patch", "overlap", "overlap_tiered") | |
if stem_type == "patch": | |
# NOTE: this stem is a minimal form of ViT PatchEmbed, as used in SwinTransformer w/ patch_size = 4 | |
self.stem = nn.Sequential( | |
nn.Conv2d( | |
in_chans, | |
dims[0], | |
kernel_size=patch_size, | |
stride=patch_size, | |
bias=conv_bias, | |
), | |
norm_layer(dims[0]), | |
) | |
stem_stride = patch_size | |
else: | |
mid_chs = make_divisible(dims[0] // 2) if "tiered" in stem_type else dims[0] | |
self.stem = nn.Sequential( | |
nn.Conv2d( | |
in_chans, | |
mid_chs, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
bias=conv_bias, | |
), | |
nn.Conv2d( | |
mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias | |
), | |
norm_layer(dims[0]), | |
) | |
stem_stride = 4 | |
self.stages = nn.Sequential() | |
dp_rates = [ | |
x.tolist() | |
for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths) | |
] | |
stages = [] | |
prev_chs = dims[0] | |
curr_stride = stem_stride | |
dilation = 1 | |
# 4 feature resolution stages, each consisting of multiple residual blocks | |
for i in range(4): | |
stride = 2 if curr_stride == 2 or i > 0 else 1 | |
if curr_stride >= output_stride and stride > 1: | |
dilation *= stride | |
stride = 1 | |
curr_stride *= stride | |
first_dilation = 1 if dilation in (1, 2) else 2 | |
out_chs = dims[i] | |
stages.append( | |
ConvNeXtStage( | |
prev_chs, | |
out_chs, | |
kernel_size=kernel_sizes[i], | |
stride=stride, | |
dilation=(first_dilation, dilation), | |
depth=depths[i], | |
drop_path_rates=dp_rates[i], | |
ls_init_value=ls_init_value, | |
conv_mlp=conv_mlp, | |
conv_bias=conv_bias, | |
use_grn=use_grn, | |
act_layer=act_layer, | |
norm_layer=norm_layer, | |
norm_layer_cl=norm_layer_cl, | |
) | |
) | |
prev_chs = out_chs | |
# NOTE feature_info use currently assumes stage 0 == stride 1, rest are stride 2 | |
self.feature_info += [ | |
dict(num_chs=prev_chs, reduction=curr_stride, module=f"stages.{i}") | |
] | |
self.stages = nn.ModuleList(stages) | |
self.mask_token = nn.Parameter(torch.zeros(1, self.embed_dim, 1, 1)) | |
self.num_features = prev_chs | |
self.apply(self._init_weights) | |
self.set_grad_checkpointing(use_checkpoint) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Conv2d): | |
trunc_normal_(module.weight, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Linear): | |
trunc_normal_(module.weight, std=0.02) | |
nn.init.zeros_(module.bias) | |
def forward(self, x, masks=None): | |
outs = [] | |
x = self.stem(x) | |
if masks is not None: | |
masks = torch.nn.functional.interpolate( | |
masks.float(), size=x.shape[-2:], mode="nearest" | |
) | |
x = torch.where(masks.bool(), self.mask_token.to(x.dtype), x).contiguous() | |
for stage in self.stages: | |
xs = stage(x) | |
outs.extend([x.permute(0, 2, 3, 1).contiguous() for x in xs]) | |
x = xs[-1] | |
return outs, [x.mean(dim=(1, 2)).unsqueeze(1).contiguous() for x in outs] | |
def group_matcher(self, coarse=False): | |
return dict( | |
stem=r"^stem", | |
blocks=( | |
r"^stages\.(\d+)" | |
if coarse | |
else [ | |
(r"^stages\.(\d+)\.downsample", (0,)), # blocks | |
(r"^stages\.(\d+)\.blocks\.(\d+)", None), | |
(r"^norm_pre", (99999,)), | |
] | |
), | |
) | |
def set_grad_checkpointing(self, enable=True): | |
for s in self.stages: | |
s.grad_checkpointing = enable | |
def freeze(self) -> None: | |
for module in self.modules(): | |
module.eval() | |
for parameters in self.parameters(): | |
parameters.requires_grad = False | |
def get_params(self, lr, wd, ld, *args, **kwargs): | |
encoder_p, encoder_lr = get_parameter_groups(self, lr, wd, ld) | |
return encoder_p, encoder_lr | |
def no_weight_decay(self): | |
return {"mask_token"} | |
def build(cls, config): | |
obj = globals()[config["model"]["encoder"]["name"]](config) | |
return obj | |
def checkpoint_filter_fn(state_dict, model): | |
"""Remap FB checkpoints -> timm""" | |
if "head.norm.weight" in state_dict or "norm_pre.weight" in state_dict: | |
return state_dict # non-FB checkpoint | |
if "model" in state_dict: | |
state_dict = state_dict["model"] | |
out_dict = {} | |
if "visual.trunk.stem.0.weight" in state_dict: | |
out_dict = { | |
k.replace("visual.trunk.", ""): v | |
for k, v in state_dict.items() | |
if k.startswith("visual.trunk.") | |
} | |
if "visual.head.proj.weight" in state_dict: | |
out_dict["head.fc.weight"] = state_dict["visual.head.proj.weight"] | |
out_dict["head.fc.bias"] = torch.zeros( | |
state_dict["visual.head.proj.weight"].shape[0] | |
) | |
elif "visual.head.mlp.fc1.weight" in state_dict: | |
out_dict["head.pre_logits.fc.weight"] = state_dict[ | |
"visual.head.mlp.fc1.weight" | |
] | |
out_dict["head.pre_logits.fc.bias"] = state_dict["visual.head.mlp.fc1.bias"] | |
out_dict["head.fc.weight"] = state_dict["visual.head.mlp.fc2.weight"] | |
out_dict["head.fc.bias"] = torch.zeros( | |
state_dict["visual.head.mlp.fc2.weight"].shape[0] | |
) | |
return out_dict | |
import re | |
for k, v in state_dict.items(): | |
k = k.replace("downsample_layers.0.", "stem.") | |
k = re.sub(r"stages.([0-9]+).([0-9]+)", r"stages.\1.blocks.\2", k) | |
k = re.sub( | |
r"downsample_layers.([0-9]+).([0-9]+)", r"stages.\1.downsample.\2", k | |
) | |
k = k.replace("dwconv", "conv_dw") | |
k = k.replace("pwconv", "mlp.fc") | |
if "grn" in k: | |
k = k.replace("grn.beta", "mlp.grn.bias") | |
k = k.replace("grn.gamma", "mlp.grn.weight") | |
v = v.reshape(v.shape[-1]) | |
k = k.replace("head.", "head.fc.") | |
if k.startswith("norm."): | |
k = k.replace("norm", "head.norm") | |
if v.ndim == 2 and "head" not in k: | |
model_shape = model.state_dict()[k].shape | |
v = v.reshape(model_shape) | |
out_dict[k] = v | |
return out_dict | |
HF_URL = { | |
"convnext_xxlarge_pt": ( | |
"laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup", | |
"open_clip_pytorch_model.bin", | |
), | |
"convnext_large_pt": ( | |
"laion/CLIP-convnext_large_d_320.laion2B-s29B-b131K-ft-soup", | |
"open_clip_pytorch_model.bin", | |
), | |
"convnext_large": ( | |
"timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384", | |
"pytorch_model.bin", | |
), | |
} | |