Spaces:
Running
Running
File size: 14,228 Bytes
560b597 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
FNS = {
"sqrt": torch.sqrt,
"log": torch.log,
"log1": lambda x: torch.log(x + 1),
"linear": lambda x: x,
"square": torch.square,
"disp": lambda x: 1 / x,
}
FNS_INV = {
"sqrt": torch.square,
"log": torch.exp,
"log1": lambda x: torch.exp(x) - 1,
"linear": lambda x: x,
"square": torch.sqrt,
"disp": lambda x: 1 / x,
}
def masked_mean_var(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
if mask is None:
return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
mask = mask.float()
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
mask_sum, min=1.0
)
mask_var = torch.sum(
mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
) / torch.clamp(mask_sum, min=1.0)
return mask_mean.squeeze(dim), mask_var.squeeze(dim)
def masked_mean(data: torch.Tensor, mask: torch.Tensor | None, dim: List[int]):
if mask is None:
return data.mean(dim=dim, keepdim=True)
mask = mask.float()
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
mask_sum, min=1.0
)
return mask_mean
def masked_mae(data: torch.Tensor, mask: torch.Tensor, dim: Tuple[int, ...]):
if mask is None:
return data.abs().mean(dim=dim, keepdim=True)
mask = mask.float()
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
mask_mean = torch.sum(data.abs() * mask, dim=dim, keepdim=True) / torch.clamp(
mask_sum, min=1.0
)
return mask_mean
def masked_mse(data: torch.Tensor, mask: torch.Tensor, dim: Tuple[int, ...]):
if mask is None:
return (data**2).mean(dim=dim, keepdim=True)
mask = mask.float()
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
mask_mean = torch.sum((data**2) * mask, dim=dim, keepdim=True) / torch.clamp(
mask_sum, min=1.0
)
return mask_mean
def masked_median(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
ndim = data.ndim
data = data.flatten(ndim - len(dim))
mask = mask.flatten(ndim - len(dim))
mask_median = torch.median(data[mask], dim=-1).values
return mask_median
def masked_median_mad(data: torch.Tensor, mask: torch.Tensor):
data = data.flatten()
mask = mask.flatten()
mask_median = torch.median(data[mask])
n_samples = torch.clamp(torch.sum(mask.float()), min=1.0)
mask_mad = torch.sum((data[mask] - mask_median).abs()) / n_samples
return mask_median, mask_mad
def masked_weighted_mean_var(
data: torch.Tensor, mask: torch.Tensor, weights: torch.Tensor, dim: Tuple[int, ...]
):
if mask is None:
return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
mask = mask.float()
mask_mean = torch.sum(data * mask * weights, dim=dim, keepdim=True) / torch.sum(
mask * weights, dim=dim, keepdim=True
).clamp(min=1.0)
# V1**2 - V2, V1: sum w_i, V2: sum w_i**2
denom = torch.sum(weights * mask, dim=dim, keepdim=True).square() - torch.sum(
(mask * weights).square(), dim=dim, keepdim=True
)
# correction is V1 / (V1**2 - V2), if w_i=1 => N/(N**2 - N) => 1/(N-1) (unbiased estimator of variance, cvd)
correction_factor = torch.sum(mask * weights, dim=dim, keepdim=True) / denom.clamp(
min=1.0
)
mask_var = correction_factor * torch.sum(
weights * mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
)
return mask_mean, mask_var
def masked_mean_var_q(data: torch.Tensor, mask: torch.Tensor, dim: List[int]):
if mask is None:
return data.mean(dim=dim, keepdim=True), data.var(dim=dim, keepdim=True)
mask = mask.float()
mask_sum = torch.sum(mask, dim=dim, keepdim=True)
mask_mean = torch.sum(data * mask, dim=dim, keepdim=True) / torch.clamp(
mask_sum, min=1.0
)
mask_var = torch.sum(
mask * (data - mask_mean) ** 2, dim=dim, keepdim=True
) / torch.clamp(mask_sum, min=1.0)
return mask_mean, mask_var
class SILog(nn.Module):
def __init__(
self,
weight: float,
scale_pred_weight: float = 0.15,
output_fn: str = "sqrt",
input_fn: str = "log",
legacy: bool = False,
abs_rel: bool = False,
norm: bool = False,
eps: float = 1e-5,
):
super().__init__()
assert output_fn in FNS
self.name: str = self.__class__.__name__
self.weight: float = weight
self.scale_pred_weight: float = scale_pred_weight
self.dims = (-4, -3, -2, -1) if legacy else (-2, -1)
self.output_fn = FNS[output_fn]
self.input_fn = FNS[input_fn]
self.abs_rel = abs_rel
self.norm = norm
self.eps: float = eps
@torch.cuda.amp.autocast(enabled=False)
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
mask: Optional[torch.Tensor] = None,
interpolate: bool = True,
scale_inv: torch.Tensor | None = None,
ss_inv: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor:
if interpolate:
input = F.interpolate(
input, target.shape[-2:], mode="bilinear", align_corners=False
)
if mask is not None:
mask = mask.to(torch.bool)
if ss_inv is not None:
ss_inv = ~ss_inv
if input.shape[1] > 1:
input_ = torch.cat(
[input[:, :-1], self.input_fn(input[:, -1:].clamp(min=self.eps))], dim=1
)
target_ = torch.cat(
[target[:, :-1], self.input_fn(target[:, -1:].clamp(min=self.eps))],
dim=1,
)
error = torch.norm(input_ - target_, dim=1, keepdim=True)
else:
input_ = self.input_fn(input.clamp(min=self.eps))
target_ = self.input_fn(target.clamp(min=self.eps))
error = input_ - target_
mean_error, var_error = masked_mean_var(data=error, mask=mask, dim=self.dims)
# prevoiusly was inverted!!
if self.abs_rel:
scale_error = (input - target).abs()[:, -1:] / target[:, -1:].clip(
min=self.eps
)
scale_error = masked_mean(data=scale_error, mask=mask, dim=self.dims)
else:
scale_error = mean_error**2
if var_error.ndim > 1:
var_error = var_error.sum(dim=1)
scale_error = scale_error.sum(dim=1)
# if scale inv -> mask scale error, if scale/shift, mask the full loss
if scale_inv is not None:
scale_error = (1 - scale_inv.int()) * scale_error
scale_error = self.scale_pred_weight * scale_error
loss = var_error + scale_error
out_loss = self.output_fn(loss.clamp(min=self.eps))
out_loss = masked_mean(data=out_loss, mask=ss_inv, dim=(0,))
return out_loss.mean()
@classmethod
def build(cls, config: Dict[str, Any]):
obj = cls(
weight=config["weight"],
legacy=config["legacy"],
output_fn=config["output_fn"],
input_fn=config["input_fn"],
norm=config.get("norm", False),
scale_pred_weight=config.get("gamma", 0.15),
abs_rel=config.get("abs_rel", False),
)
return obj
class MSE(nn.Module):
def __init__(
self,
weight: float = 1.0,
input_fn: str = "linear",
output_fn: str = "linear",
):
super().__init__()
self.name: str = self.__class__.__name__
self.output_fn = FNS[output_fn]
self.input_fn = FNS[input_fn]
self.weight: float = weight
self.eps = 1e-6
@torch.cuda.amp.autocast(enabled=False)
def forward(
self,
input: torch.Tensor,
target: torch.Tensor,
mask: torch.Tensor | None = None,
batch_mask: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor:
input = input[..., : target.shape[-1]] # B N C or B H W C
error = self.input_fn(input + self.eps) - self.input_fn(target + self.eps)
abs_error = torch.square(error).sum(dim=-1)
mean_error = masked_mean(data=abs_error, mask=mask, dim=(-1,)).mean(dim=-1)
batched_error = masked_mean(
self.output_fn(mean_error.clamp(self.eps)), batch_mask, dim=(0,)
)
return batched_error.mean(), mean_error.detach()
@classmethod
def build(cls, config: Dict[str, Any]):
obj = cls(
weight=config["weight"],
output_fn=config["output_fn"],
input_fn=config["input_fn"],
)
return obj
class SelfCons(nn.Module):
def __init__(
self,
weight: float,
scale_pred_weight: float = 0.15,
output_fn: str = "sqrt",
input_fn: str = "log",
abs_rel: bool = False,
norm: bool = False,
eps: float = 1e-5,
):
super().__init__()
assert output_fn in FNS
self.name: str = self.__class__.__name__
self.weight: float = weight
self.scale_pred_weight: float = scale_pred_weight
self.dims = (-2, -1)
self.output_fn = FNS[output_fn]
self.input_fn = FNS[input_fn]
self.abs_rel = abs_rel
self.norm = norm
self.eps: float = eps
@torch.cuda.amp.autocast(enabled=False)
def forward(
self,
input: torch.Tensor,
mask: torch.Tensor,
metas: List[Dict[str, torch.Tensor]],
) -> torch.Tensor:
chunks = input.shape[0] // 2
device = input.device
mask = F.interpolate(mask.float(), size=input.shape[-2:], mode="nearest")
rescales = input.shape[-2] / torch.tensor(
[x["resized_shape"][0] for x in metas], device=device
)
cams = torch.cat([x["K_target"] for x in metas], dim=0).to(device)
flips = torch.tensor([x["flip"] for x in metas], device=device)
iters = zip(
input.chunk(chunks),
mask.chunk(chunks),
cams.chunk(chunks),
rescales.chunk(chunks),
flips.chunk(chunks),
)
inputs0, inputs1, masks = [], [], []
for i, (pair_input, pair_mask, pair_cam, pair_rescale, pair_flip) in enumerate(
iters
):
mask0, mask1 = pair_mask
input0, input1 = pair_input
cam0, cam1 = pair_cam
rescale0, rescale1 = pair_rescale
flip0, flip1 = pair_flip
fx_0 = cam0[0, 0] * rescale0
fx_1 = cam1[0, 0] * rescale1
cx_0 = (cam0[0, 2] - 0.5) * rescale0 + 0.5
cx_1 = (cam1[0, 2] - 0.5) * rescale1 + 0.5
cy_0 = (cam0[1, 2] - 0.5) * rescale0 + 0.5
cy_1 = (cam1[1, 2] - 0.5) * rescale1 + 0.5
# flip image
if flip0 ^ flip1:
input0 = torch.flip(input0, dims=(2,))
mask0 = torch.flip(mask0, dims=(2,))
cx_0 = input0.shape[-1] - cx_0
# calc zoom
zoom_x = float(fx_1 / fx_0)
# apply zoom
input0 = F.interpolate(
input0.unsqueeze(0),
scale_factor=zoom_x,
mode="bilinear",
align_corners=True,
).squeeze(0)
mask0 = F.interpolate(
mask0.unsqueeze(0), scale_factor=zoom_x, mode="nearest"
).squeeze(0)
# calc translation
change_left = int(cx_1 - (cx_0 - 0.5) * zoom_x - 0.5)
change_top = int(cy_1 - (cy_0 - 0.5) * zoom_x - 0.5)
change_right = input1.shape[-1] - change_left - input0.shape[-1]
change_bottom = input1.shape[-2] - change_top - input0.shape[-2]
# apply translation
pad_left = max(0, change_left)
pad_right = max(0, change_right)
pad_top = max(0, change_top)
pad_bottom = max(0, change_bottom)
crop_left = max(0, -change_left)
crop_right = max(0, -change_right)
crop_top = max(0, -change_top)
crop_bottom = max(0, -change_bottom)
input0 = F.pad(
input0,
(pad_left, pad_right, pad_top, pad_bottom),
mode="constant",
value=0,
)
mask0 = F.pad(
mask0,
(pad_left, pad_right, pad_top, pad_bottom),
mode="constant",
value=0,
)
input0 = input0[
:,
crop_top : input0.shape[-2] - crop_bottom,
crop_left : input0.shape[-1] - crop_right,
]
mask0 = mask0[
:,
crop_top : mask0.shape[-2] - crop_bottom,
crop_left : mask0.shape[-1] - crop_right,
]
mask = torch.logical_and(mask0, mask1)
inputs0.append(input0)
inputs1.append(input1)
masks.append(mask)
inputs0 = torch.stack(inputs0, dim=0)
inputs1 = torch.stack(inputs1, dim=0)
masks = torch.stack(masks, dim=0)
loss1 = self.loss(inputs0, inputs1.detach(), masks)
loss2 = self.loss(inputs1, inputs0.detach(), masks)
return torch.cat([loss1, loss2], dim=0).mean()
def loss(
self,
input: torch.Tensor,
target: torch.Tensor,
mask: torch.Tensor,
) -> torch.Tensor:
loss = masked_mean(
(input - target).square().mean(dim=1), mask=mask, dim=(-2, -1)
)
return self.output_fn(loss + self.eps)
@classmethod
def build(cls, config: Dict[str, Any]):
obj = cls(
weight=config["weight"],
output_fn=config["output_fn"],
input_fn=config["input_fn"],
)
return obj
|