File size: 10,385 Bytes
560b597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
"""
Author: Luigi Piccinelli
Licensed under the CC-BY NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/)
"""

from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

from .layer_scale import LayerScale
from .mlp import MLP


class SimpleAttention(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 4,
        dropout: float = 0.0,
        cosine: bool = False,
        context_dim: int | None = None,
    ):
        super().__init__()
        self.dropout = dropout
        self.num_heads = num_heads
        self.hidden_dim = dim
        context_dim = context_dim or dim

        self.kv = nn.Linear(context_dim, dim * 2, bias=False)
        self.q = nn.Linear(dim, dim, bias=False)
        self.norm_attnx = nn.LayerNorm(dim)
        self.norm_attnctx = nn.LayerNorm(context_dim)
        self.cosine = cosine
        self.out = nn.Linear(dim, dim)

    def forward(
        self,
        x: torch.Tensor,
        attn_bias: torch.Tensor | None = None,
        context: torch.Tensor | None = None,
        pos_embed: torch.Tensor | None = None,
        pos_embed_context: torch.Tensor | None = None,
        rope: nn.Module | None = None,
    ) -> torch.Tensor:
        context = x if context is None else context
        x = self.norm_attnx(x)
        context = self.norm_attnctx(context)
        k, v = rearrange(
            self.kv(context), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2
        ).unbind(dim=-1)
        q = rearrange(self.q(x), "b n (h d) -> b h n d", h=self.num_heads)

        if rope is not None:
            q = rope(q)
            k = rope(k)
        else:
            if pos_embed is not None:
                pos_embed = rearrange(
                    pos_embed, "b n (h d) -> b h n d", h=self.num_heads
                )
                q = q + pos_embed
            if pos_embed_context is not None:
                pos_embed_context = rearrange(
                    pos_embed_context, "b n (h d) -> b h n d", h=self.num_heads
                )
                k = k + pos_embed_context

        if self.cosine:
            q, k = map(partial(F.normalize, p=2, dim=-1), (q, k))  # cosine sim
        x = F.scaled_dot_product_attention(
            q, k, v, dropout_p=self.dropout, attn_mask=attn_bias
        )
        x = rearrange(x, "b h n d -> b n (h d)")
        x = self.out(x)
        return x


class AttentionBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 4,
        expansion: int = 4,
        dropout: float = 0.0,
        cosine: bool = False,
        gated: bool = False,
        layer_scale: float = 1.0,
        context_dim: int | None = None,
    ):
        super().__init__()
        self.dropout = dropout
        self.num_heads = num_heads
        self.hidden_dim = dim
        context_dim = context_dim or dim
        self.mlp = MLP(dim, expansion=expansion, dropout=dropout, gated=gated)
        self.kv = nn.Linear(context_dim, dim * 2)
        self.q = nn.Linear(dim, dim)
        self.norm_attnx = nn.LayerNorm(dim)
        self.norm_attnctx = nn.LayerNorm(context_dim)
        self.cosine = cosine
        self.out = nn.Linear(dim, dim)
        self.ls1 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()
        self.ls2 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()

    def attn(
        self,
        x: torch.Tensor,
        attn_bias: torch.Tensor | None = None,
        context: torch.Tensor | None = None,
        pos_embed: torch.Tensor | None = None,
        pos_embed_context: torch.Tensor | None = None,
        rope: nn.Module | None = None,
    ) -> torch.Tensor:
        x = self.norm_attnx(x)
        context = self.norm_attnctx(context)
        k, v = rearrange(
            self.kv(context), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2
        ).unbind(dim=-1)
        q = rearrange(self.q(x), "b n (h d) -> b h n d", h=self.num_heads)

        if rope is not None:
            q = rope(q)
            k = rope(k)
        else:
            if pos_embed is not None:
                pos_embed = rearrange(
                    pos_embed, "b n (h d) -> b h n d", h=self.num_heads
                )
                q = q + pos_embed
            if pos_embed_context is not None:
                pos_embed_context = rearrange(
                    pos_embed_context, "b n (h d) -> b h n d", h=self.num_heads
                )
                k = k + pos_embed_context

        if self.cosine:
            q, k = map(partial(F.normalize, p=2, dim=-1), (q, k))  # cosine sim

        x = F.scaled_dot_product_attention(
            q, k, v, dropout_p=self.dropout, attn_mask=attn_bias
        )
        x = rearrange(x, "b h n d -> b n (h d)")
        x = self.out(x)
        return x

    def forward(
        self,
        x: torch.Tensor,
        attn_bias: torch.Tensor | None = None,
        context: torch.Tensor | None = None,
        pos_embed: torch.Tensor | None = None,
        pos_embed_context: torch.Tensor | None = None,
        rope: nn.Module | None = None,
    ) -> torch.Tensor:
        context = x if context is None else context
        x = (
            self.ls1(
                self.attn(
                    x,
                    rope=rope,
                    attn_bias=attn_bias,
                    context=context,
                    pos_embed=pos_embed,
                    pos_embed_context=pos_embed_context,
                )
            )
            + x
        )
        x = self.ls2(self.mlp(x)) + x
        return x


class AttentionDecoderBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int = 4,
        expansion: int = 4,
        dropout: float = 0.0,
        cosine: bool = False,
        gated: bool = False,
        layer_scale: float = 1.0,
        context_dim: int | None = None,
        single_head_ca: bool = True,
    ):
        super().__init__()
        self.dropout = dropout
        self.num_heads = num_heads
        self.hidden_dim = dim
        self.single_head_ca = single_head_ca
        context_dim = context_dim or dim
        self.mlp = MLP(dim, expansion=expansion, dropout=dropout, gated=gated)
        self.kv_ca = nn.Linear(context_dim, dim * 2)
        self.q_ca = nn.Linear(dim, dim)
        self.kv_sa = nn.Linear(dim, dim * 2)
        self.q_sa = nn.Linear(dim, dim)
        self.norm_x_sa = nn.LayerNorm(dim)
        self.norm_x_ca = nn.LayerNorm(dim)
        self.norm_ctx_ca = nn.LayerNorm(context_dim)
        self.cosine = cosine
        self.out_ca = nn.Linear(dim, dim)
        self.out_sa = nn.Linear(dim, dim)
        self.ls1 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()
        self.ls2 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()
        self.ls3 = LayerScale(dim, layer_scale) if layer_scale > 0.0 else nn.Identity()

    def cross_attn(
        self,
        x: torch.Tensor,
        attn_bias: torch.Tensor | None = None,
        context: torch.Tensor | None = None,
        pos_embed: torch.Tensor | None = None,
        pos_embed_context: torch.Tensor | None = None,
        rope: nn.Module | None = None,
    ) -> torch.Tensor:
        num_heads = 1 if self.single_head_ca else self.num_heads
        x = self.norm_x_ca(x)
        context = self.norm_ctx_ca(context)
        k, v = rearrange(
            self.kv_ca(context), "b n (kv h d) -> b h n d kv", h=num_heads, kv=2
        ).unbind(dim=-1)
        q = rearrange(self.q_ca(x), "b n (h d) -> b h n d", h=num_heads)

        if rope is not None:
            q = rope(q)
            k = rope(k)
        else:
            if pos_embed is not None:
                pos_embed = rearrange(pos_embed, "b n (h d) -> b h n d", h=num_heads)
                q = q + pos_embed
            if pos_embed_context is not None:
                pos_embed_context = rearrange(
                    pos_embed_context, "b n (h d) -> b h n d", h=num_heads
                )
                k = k + pos_embed_context

        if self.cosine:
            q, k = map(partial(F.normalize, p=2, dim=-1), (q, k))  # cosine sim
        x = F.scaled_dot_product_attention(
            q, k, v, dropout_p=self.dropout, attn_mask=attn_bias
        )
        x = rearrange(x, "b h n d -> b n (h d)")
        x = self.out_ca(x)
        return x

    def self_attn(
        self,
        x: torch.Tensor,
        attn_bias: torch.Tensor | None = None,
        pos_embed: torch.Tensor | None = None,
        rope: nn.Module | None = None,
    ) -> torch.Tensor:
        x = self.norm_x_sa(x)
        k, v = rearrange(
            self.kv_sa(x), "b n (kv h d) -> b h n d kv", h=self.num_heads, kv=2
        ).unbind(dim=-1)
        q = rearrange(self.q_sa(x), "b n (h d) -> b h n d", h=self.num_heads)

        if rope is not None:
            q = rope(q)
            k = rope(k)
        elif pos_embed is not None:
            pos_embed = rearrange(pos_embed, "b n (h d) -> b h n d", h=self.num_heads)
            q = q + pos_embed

        if self.cosine:
            q, k = map(partial(F.normalize, p=2, dim=-1), (q, k))  # cosine sim
        x = F.scaled_dot_product_attention(
            q, k, v, dropout_p=self.dropout, attn_mask=attn_bias
        )
        x = rearrange(x, "b h n d -> b n (h d)")
        x = self.out_sa(x)
        return x

    def forward(
        self,
        x: torch.Tensor,
        attn_bias: torch.Tensor | None = None,
        context: torch.Tensor | None = None,
        pos_embed: torch.Tensor | None = None,
        pos_embed_context: torch.Tensor | None = None,
        rope: nn.Module | None = None,
    ) -> torch.Tensor:
        context = x if context is None else context
        x = (
            self.ls1(
                self.cross_attn(
                    x,
                    rope=rope,
                    attn_bias=attn_bias,
                    context=context,
                    pos_embed=pos_embed,
                    pos_embed_context=pos_embed_context,
                )
            )
            + x
        )
        x = (
            self.ls2(
                self.self_attn(x, rope=rope, attn_bias=attn_bias, pos_embed=pos_embed)
            )
            + x
        )
        x = self.ls3(self.mlp(x)) + x
        return x