Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Scikit learn example https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from sklearn.cluster import OPTICS, cluster_optics_dbscan
|
6 |
+
import matplotlib.gridspec as gridspec
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
plt.switch_backend("agg")
|
11 |
+
|
12 |
+
# Theme from - https://huggingface.co/spaces/trl-lib/stack-llama/blob/main/app.py
|
13 |
+
theme = gr.themes.Monochrome(
|
14 |
+
primary_hue="indigo",
|
15 |
+
secondary_hue="blue",
|
16 |
+
neutral_hue="slate",
|
17 |
+
radius_size=gr.themes.sizes.radius_sm,
|
18 |
+
font=[
|
19 |
+
gr.themes.GoogleFont("Open Sans"),
|
20 |
+
"ui-sans-serif",
|
21 |
+
"system-ui",
|
22 |
+
"sans-serif",
|
23 |
+
],
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def do_submit(n_points_per_cluster, min_samples, xi, min_cluster_size):
|
28 |
+
# # Generate sample data
|
29 |
+
np.random.seed(0)
|
30 |
+
n_points_per_cluster = int(n_points_per_cluster)
|
31 |
+
|
32 |
+
C1 = [-5, -2] + 0.8 * np.random.randn(n_points_per_cluster, 2)
|
33 |
+
C2 = [4, -1] + 0.1 * np.random.randn(n_points_per_cluster, 2)
|
34 |
+
C3 = [1, -2] + 0.2 * np.random.randn(n_points_per_cluster, 2)
|
35 |
+
C4 = [-2, 3] + 0.3 * np.random.randn(n_points_per_cluster, 2)
|
36 |
+
C5 = [3, -2] + 1.6 * np.random.randn(n_points_per_cluster, 2)
|
37 |
+
C6 = [5, 6] + 2 * np.random.randn(n_points_per_cluster, 2)
|
38 |
+
X = np.vstack((C1, C2, C3, C4, C5, C6))
|
39 |
+
|
40 |
+
clust = OPTICS(
|
41 |
+
min_samples=int(min_samples),
|
42 |
+
xi=float(xi),
|
43 |
+
min_cluster_size=float(min_cluster_size),
|
44 |
+
)
|
45 |
+
|
46 |
+
# Run the fit
|
47 |
+
clust.fit(X)
|
48 |
+
|
49 |
+
labels_050 = cluster_optics_dbscan(
|
50 |
+
reachability=clust.reachability_,
|
51 |
+
core_distances=clust.core_distances_,
|
52 |
+
ordering=clust.ordering_,
|
53 |
+
eps=0.5,
|
54 |
+
)
|
55 |
+
labels_200 = cluster_optics_dbscan(
|
56 |
+
reachability=clust.reachability_,
|
57 |
+
core_distances=clust.core_distances_,
|
58 |
+
ordering=clust.ordering_,
|
59 |
+
eps=2,
|
60 |
+
)
|
61 |
+
|
62 |
+
space = np.arange(len(X))
|
63 |
+
reachability = clust.reachability_[clust.ordering_]
|
64 |
+
labels = clust.labels_[clust.ordering_]
|
65 |
+
|
66 |
+
plt.figure(figsize=(10, 7))
|
67 |
+
G = gridspec.GridSpec(2, 3)
|
68 |
+
ax1 = plt.subplot(G[0, :])
|
69 |
+
ax2 = plt.subplot(G[1, 0])
|
70 |
+
ax3 = plt.subplot(G[1, 1])
|
71 |
+
ax4 = plt.subplot(G[1, 2])
|
72 |
+
|
73 |
+
# Reachability plot
|
74 |
+
colors = ["g.", "r.", "b.", "y.", "c."]
|
75 |
+
for klass, color in zip(range(0, 5), colors):
|
76 |
+
Xk = space[labels == klass]
|
77 |
+
Rk = reachability[labels == klass]
|
78 |
+
ax1.plot(Xk, Rk, color, alpha=0.3)
|
79 |
+
ax1.plot(space[labels == -1], reachability[labels == -1], "k.", alpha=0.3)
|
80 |
+
ax1.plot(space, np.full_like(space, 2.0, dtype=float), "k-", alpha=0.5)
|
81 |
+
ax1.plot(space, np.full_like(space, 0.5, dtype=float), "k-.", alpha=0.5)
|
82 |
+
ax1.set_ylabel("Reachability (epsilon distance)")
|
83 |
+
ax1.set_title("Reachability Plot")
|
84 |
+
|
85 |
+
# OPTICS
|
86 |
+
colors = ["g.", "r.", "b.", "y.", "c."]
|
87 |
+
for klass, color in zip(range(0, 5), colors):
|
88 |
+
Xk = X[clust.labels_ == klass]
|
89 |
+
ax2.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3)
|
90 |
+
ax2.plot(X[clust.labels_ == -1, 0], X[clust.labels_ == -1, 1], "k+", alpha=0.1)
|
91 |
+
ax2.set_title("Automatic Clustering\nOPTICS")
|
92 |
+
|
93 |
+
# DBSCAN at 0.5
|
94 |
+
colors = ["g.", "r.", "b.", "c."]
|
95 |
+
for klass, color in zip(range(0, 4), colors):
|
96 |
+
Xk = X[labels_050 == klass]
|
97 |
+
ax3.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3)
|
98 |
+
ax3.plot(X[labels_050 == -1, 0], X[labels_050 == -1, 1], "k+", alpha=0.1)
|
99 |
+
ax3.set_title("Clustering at 0.5 epsilon cut\nDBSCAN")
|
100 |
+
|
101 |
+
# DBSCAN at 2.
|
102 |
+
colors = ["g.", "m.", "y.", "c."]
|
103 |
+
for klass, color in zip(range(0, 4), colors):
|
104 |
+
Xk = X[labels_200 == klass]
|
105 |
+
ax4.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3)
|
106 |
+
ax4.plot(X[labels_200 == -1, 0], X[labels_200 == -1, 1], "k+", alpha=0.1)
|
107 |
+
ax4.set_title("Clustering at 2.0 epsilon cut\nDBSCAN")
|
108 |
+
|
109 |
+
plt.tight_layout()
|
110 |
+
|
111 |
+
return plt
|
112 |
+
|
113 |
+
|
114 |
+
title = "Demo of OPTICS clustering algorithm"
|
115 |
+
with gr.Blocks(title=title, theme=theme) as demo:
|
116 |
+
gr.Markdown(f"## {title}")
|
117 |
+
gr.Markdown(
|
118 |
+
"[Scikit-learn Example](https://scikit-learn.org/stable/auto_examples/cluster/plot_optics.html)"
|
119 |
+
)
|
120 |
+
|
121 |
+
gr.Markdown(
|
122 |
+
"Finds core samples of high density and expands clusters from them. This example uses data that is \
|
123 |
+
generated so that the clusters have different densities. The [OPTICS](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS) is first used with its Xi cluster detection \
|
124 |
+
method, and then setting specific thresholds on the reachability, which corresponds to [DBSCAN](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN). We can see that \
|
125 |
+
the different clusters of OPTICS’s Xi method can be recovered with different choices of thresholds in DBSCAN."
|
126 |
+
)
|
127 |
+
|
128 |
+
n_points_per_cluster = gr.Slider(
|
129 |
+
minimum=200,
|
130 |
+
maximum=500,
|
131 |
+
label="Number of points per cluster",
|
132 |
+
step=50,
|
133 |
+
value=250,
|
134 |
+
)
|
135 |
+
min_samples = gr.Slider(
|
136 |
+
minimum=10,
|
137 |
+
maximum=100,
|
138 |
+
label="OPTICS - Minimum number of samples",
|
139 |
+
step=5,
|
140 |
+
value=50,
|
141 |
+
info="The number of samples in a neighborhood for a point to be considered as a core point.",
|
142 |
+
)
|
143 |
+
xi = gr.Slider(
|
144 |
+
minimum=0,
|
145 |
+
maximum=0.2,
|
146 |
+
label="OPTICS - Xi",
|
147 |
+
step=0.05,
|
148 |
+
value=0.05,
|
149 |
+
info="Determines the minimum steepness on the reachability plot that constitutes a cluster boundary. ",
|
150 |
+
)
|
151 |
+
|
152 |
+
min_cluster_size = gr.Slider(
|
153 |
+
minimum=0.01,
|
154 |
+
maximum=0.1,
|
155 |
+
label="OPTICS - Minimum cluster size",
|
156 |
+
step=0.01,
|
157 |
+
value=0.05,
|
158 |
+
info="Minimum number of samples in an OPTICS cluster, expressed as an absolute number or a fraction of the number of samples (rounded to be at least 2).",
|
159 |
+
)
|
160 |
+
|
161 |
+
plt_out = gr.Plot()
|
162 |
+
|
163 |
+
sub_btn = gr.Button("Submit")
|
164 |
+
sub_btn.click(
|
165 |
+
fn=do_submit,
|
166 |
+
inputs=[n_points_per_cluster, min_samples, xi, min_cluster_size],
|
167 |
+
outputs=[plt_out],
|
168 |
+
)
|
169 |
+
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
demo.launch()
|
173 |
+
|