|
""" |
|
======================================================= |
|
Comparison of LDA and PCA 2D projection of Iris dataset |
|
======================================================= |
|
|
|
The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour |
|
and Virginica) with 4 attributes: sepal length, sepal width, petal length |
|
and petal width. |
|
|
|
Principal Component Analysis (PCA) applied to this data identifies the |
|
combination of attributes (principal components, or directions in the |
|
feature space) that account for the most variance in the data. Here we |
|
plot the different samples on the 2 first principal components. |
|
|
|
Linear Discriminant Analysis (LDA) tries to identify attributes that |
|
account for the most variance *between classes*. In particular, |
|
LDA, in contrast to PCA, is a supervised method, using known class labels. |
|
|
|
""" |
|
|
|
import matplotlib.pyplot as plt |
|
import gradio as gr |
|
from sklearn import datasets |
|
from sklearn.decomposition import PCA |
|
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis |
|
import numpy as np |
|
|
|
|
|
iris = datasets.load_iris() |
|
|
|
all_X = iris.data |
|
all_y = iris.target |
|
target_names = iris.target_names |
|
|
|
|
|
def plot_lda_pca(n_samples = 50, n_features = 4): |
|
|
|
''' |
|
Function to plot LDA and PCA of Iris dataset |
|
|
|
Parameters |
|
---------- |
|
n_samples : int, optional |
|
Number of samples to use from the dataset. The default is 50. |
|
n_features : int, optional |
|
Number of features to use from dataset. The default is 4. |
|
|
|
''' |
|
|
|
|
|
|
|
|
|
idx = np.random.randint(0, len(iris.data), n_samples) |
|
|
|
X = all_X[idx, :n_features] |
|
y = all_y[idx] |
|
|
|
|
|
pca = PCA(n_components=2) |
|
X_r = pca.fit(X).transform(X) |
|
|
|
|
|
lda = LinearDiscriminantAnalysis(n_components=2) |
|
X_r2 = lda.fit(X, y).transform(X) |
|
|
|
|
|
print( |
|
"explained variance ratio (first two components): %s" |
|
% str(pca.explained_variance_ratio_) |
|
) |
|
|
|
|
|
fig, axes = plt.subplots(2,1, sharey= False, sharex=False, figsize = (8,6)) |
|
colors = ["navy", "turquoise", "darkorange"] |
|
lw = 2 |
|
|
|
for color, i, target_name in zip(colors, [0, 1, 2], target_names): |
|
axes[0].scatter( |
|
X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=0.8, lw=lw, label=target_name |
|
) |
|
axes[0].legend(loc="lower right") |
|
axes[0].set_title("PCA of IRIS dataset") |
|
for color, i, target_name in zip(colors, [0, 1, 2], target_names): |
|
axes[1].scatter( |
|
X_r2[y == i, 0], X_r2[y == i, 1], alpha=0.8, color=color, label=target_name |
|
) |
|
plt.legend(loc="best", shadow=False, scatterpoints=1) |
|
axes[1].legend(loc="lower right") |
|
axes[1].set_title("LDA of IRIS dataset") |
|
plt.tight_layout() |
|
|
|
|
|
return fig |
|
|
|
|
|
title = "2-D projection of Iris dataset using LDA and PCA" |
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"# {title}") |
|
gr.Markdown(" This example shows how one can use Prinicipal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) to cluster the Iris dataset based on provided features. <br>" |
|
" PCA applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. <br>" |
|
" LDA is a supervised method that tries to identify attributes that account for the most variance between classes using the known class labels. <br>" |
|
" The number of samples (n_samples) will determine the number of data points to produce. <br>" |
|
" The number of components is fixed to 2 for this 2-D visualisation and LDA requires the number of components to be the number of classes -1, which in this case is (3-1) = 2. <br>" |
|
" The number of features (n_features) determine the number of features from the IRIS dataset to use for the model fitting. <br>" |
|
" For further details please see the sklearn docs:" |
|
) |
|
|
|
gr.Markdown(" **[Demo is based on sklearn docs found here](https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-lda-py)** <br>") |
|
|
|
gr.Markdown(" **Dataset** : The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes or features: sepal length, sepal width, petal length and petal width. . <br>") |
|
|
|
|
|
max_samples = len(iris.data) |
|
max_features = iris.data.shape[1] |
|
with gr.Row(): |
|
n_samples = gr.Slider(value=100, minimum=10, maximum=max_samples, step=10, label="n_samples") |
|
|
|
n_features = gr.Slider(value=2, minimum=2, maximum=max_features, step=1, label="n_features") |
|
|
|
btn = gr.Button(value="Run") |
|
btn.click(plot_lda_pca, inputs = [n_samples, n_features], outputs= gr.Plot(label='PCA vs LDA clustering') ) |
|
|
|
|
|
demo.launch() |