Spaces:
Sleeping
Sleeping
Commit
·
6f11e8c
1
Parent(s):
7d35b20
Everything for space
Browse files- app.py +134 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import gradio as gr
|
5 |
+
from sklearn.svm import SVC
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
|
8 |
+
def plot_decision(
|
9 |
+
clf: SVC,
|
10 |
+
X: np.ndarray,
|
11 |
+
x_range: np.array,
|
12 |
+
y_range: np.array,
|
13 |
+
weights: np.array,
|
14 |
+
colors: list[str],
|
15 |
+
title: str
|
16 |
+
):
|
17 |
+
# plot the decision function
|
18 |
+
xx, yy = np.meshgrid(x_range, y_range)
|
19 |
+
|
20 |
+
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
|
21 |
+
Z = Z.reshape(xx.shape)
|
22 |
+
|
23 |
+
|
24 |
+
fig = go.Figure()
|
25 |
+
|
26 |
+
fig.add_trace(
|
27 |
+
go.Contour(
|
28 |
+
x=x_range,
|
29 |
+
y=y_range,
|
30 |
+
z=Z,
|
31 |
+
colorscale="gray",
|
32 |
+
opacity=0.75,
|
33 |
+
showscale=False,
|
34 |
+
)
|
35 |
+
)
|
36 |
+
|
37 |
+
fig.add_trace(
|
38 |
+
go.Scatter(
|
39 |
+
x=X[:, 0],
|
40 |
+
y=X[:, 1],
|
41 |
+
mode="markers",
|
42 |
+
marker=dict(
|
43 |
+
color=colors,
|
44 |
+
size=(weights + 5) * 2
|
45 |
+
),
|
46 |
+
)
|
47 |
+
)
|
48 |
+
|
49 |
+
# Remove x and y ticks
|
50 |
+
fig.update_xaxes(showticklabels=False)
|
51 |
+
fig.update_yaxes(showticklabels=False)
|
52 |
+
# Add title
|
53 |
+
fig.update_layout(title=title)
|
54 |
+
|
55 |
+
return fig
|
56 |
+
|
57 |
+
def app_fn(seed: int, weight_1: int, weight_2: int):
|
58 |
+
# we create 20 points
|
59 |
+
np.random.seed(seed)
|
60 |
+
X = np.r_[np.random.randn(10, 2) + [1, 1], np.random.randn(10, 2)]
|
61 |
+
y = [1] * 10 + [-1] * 10
|
62 |
+
|
63 |
+
sample_weight_last_ten = abs(np.random.randn(len(X)))
|
64 |
+
sample_weight_constant = np.ones(len(X))
|
65 |
+
|
66 |
+
sample_weight_last_ten[15:] *= weight_1
|
67 |
+
sample_weight_last_ten[9] *= weight_2
|
68 |
+
|
69 |
+
# This model does not take into account sample weights.
|
70 |
+
clf_no_weights = SVC(gamma=1)
|
71 |
+
clf_no_weights.fit(X, y)
|
72 |
+
|
73 |
+
# This other model takes into account some dedicated sample weights.
|
74 |
+
clf_weights = SVC(gamma=1)
|
75 |
+
clf_weights.fit(X, y, sample_weight=sample_weight_last_ten)
|
76 |
+
|
77 |
+
# Plotting
|
78 |
+
x_range = np.arange(-4, 5, 0.1)
|
79 |
+
colors = np.where(np.array(y)==1, "white", "black")
|
80 |
+
|
81 |
+
fig_no_weights = plot_decision(
|
82 |
+
clf_no_weights,
|
83 |
+
X,
|
84 |
+
x_range,
|
85 |
+
x_range,
|
86 |
+
sample_weight_constant,
|
87 |
+
colors,
|
88 |
+
"SVM without Weights"
|
89 |
+
)
|
90 |
+
|
91 |
+
fig_weights = plot_decision(
|
92 |
+
clf_weights,
|
93 |
+
X,
|
94 |
+
x_range,
|
95 |
+
x_range,
|
96 |
+
sample_weight_last_ten,
|
97 |
+
colors,
|
98 |
+
"SVM with Weights"
|
99 |
+
)
|
100 |
+
|
101 |
+
return fig_no_weights, fig_weights
|
102 |
+
|
103 |
+
title = "SVM with Weighted Samples"
|
104 |
+
|
105 |
+
with gr.Blocks(title=title) as demo:
|
106 |
+
gr.Markdown(f"# {title}")
|
107 |
+
gr.Markdown(
|
108 |
+
"""
|
109 |
+
### This is a demo of how SVMs can be trained with weighted samples \
|
110 |
+
and the impact on the decision boundary. To represent that a synthetic \
|
111 |
+
dataset is generated with 20 points, 10 of which are assigned to the \
|
112 |
+
positive class and 10 to the negative class. A weight is assigned to \
|
113 |
+
each sample, which is the importance of that sample in the dataset. \
|
114 |
+
A model with and without weights is trained and the decision boundary \
|
115 |
+
is plotted. The size of the points is proportional to the weight of \
|
116 |
+
the sample.
|
117 |
+
|
118 |
+
Created by [@eduardopacheco](https://huggingface.co/EduardoPacheco) based on [scikit-learn-docs](https://scikit-learn.org/stable/auto_examples/svm/plot_weighted_samples.html#sphx-glr-auto-examples-svm-plot-weighted-samples-py)
|
119 |
+
"""
|
120 |
+
)
|
121 |
+
with gr.Row():
|
122 |
+
seed = gr.inputs.Slider(0, 100, 1, default=0, label="Seed")
|
123 |
+
weight_1 = gr.inputs.Slider(0, 20, 1, default=5, label="Weight for last 5 Samples")
|
124 |
+
weight_2 = gr.inputs.Slider(0, 20, 1, default=15, label="Weight for Sample 10")
|
125 |
+
btn = gr.Button("Run")
|
126 |
+
with gr.Row():
|
127 |
+
fig_no_weights = gr.Plot(label="SVM without Weights")
|
128 |
+
fig_weights = gr.Plot(label="SVM with Weights")
|
129 |
+
|
130 |
+
btn.click(fn=app_fn, outputs=[fig_no_weights, fig_weights], inputs=[seed, weight_1, weight_2])
|
131 |
+
demo.load(fn=app_fn, outputs=[fig_no_weights, fig_weights], inputs=[seed, weight_1, weight_2])
|
132 |
+
|
133 |
+
demo.launch()
|
134 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
scikit-learn==1.2.2
|
2 |
+
plotly==5.14.1
|