import numpy as np import matplotlib.pyplot as plt import gradio as gr def modified_huber_loss(y_true, y_pred): z = y_pred * y_true loss = -4 * z loss[z >= -1] = (1 - z[z >= -1]) ** 2 loss[z >= 1.0] = 0 return loss def plot_loss_func(): xmin, xmax = -4, 4 xx = np.linspace(xmin, xmax, 100) lw = 2 plt.clf() fig = plt.figure(figsize=(10, 10), dpi=100) plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color="gold", lw=lw, label="Zero-one loss") plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color="teal", lw=lw, label="Hinge loss") plt.plot(xx, -np.minimum(xx, 0), color="yellowgreen", lw=lw, label="Perceptron loss") plt.plot(xx, np.log2(1 + np.exp(-xx)), color="cornflowerblue", lw=lw, label="Log loss") plt.plot( xx, np.where(xx < 1, 1 - xx, 0) ** 2, color="orange", lw=lw, label="Squared hinge loss", ) plt.plot( xx, modified_huber_loss(xx, 1), color="darkorchid", lw=lw, linestyle="--", label="Modified Huber loss", ) plt.ylim((0, 8)) plt.legend(loc="upper right") plt.xlabel(r"Decision function $f(x)$") plt.ylabel("$L(y=1, f(x))$") return fig title = "SGD convex loss functions" # def greet(name): # return "Hello " + name + "!" with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html#sphx-glr-auto-examples-linear-model-plot-sgd-loss-functions-py)**") btn = gr.Button(value="SGD convex loss functions") btn.click(plot_loss_func, outputs= gr.Plot() ) # demo.launch()