Spaces:
Sleeping
Sleeping
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
def modified_huber_loss(y_true, y_pred): | |
z = y_pred * y_true | |
loss = -4 * z | |
loss[z >= -1] = (1 - z[z >= -1]) ** 2 | |
loss[z >= 1.0] = 0 | |
return loss | |
def plot_loss_func(): | |
xmin, xmax = -4, 4 | |
xx = np.linspace(xmin, xmax, 100) | |
lw = 2 | |
plt.clf() | |
fig = plt.figure(figsize=(10, 10), dpi=100) | |
plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color="gold", lw=lw, label="Zero-one loss") | |
plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color="teal", lw=lw, label="Hinge loss") | |
plt.plot(xx, -np.minimum(xx, 0), color="yellowgreen", lw=lw, label="Perceptron loss") | |
plt.plot(xx, np.log2(1 + np.exp(-xx)), color="cornflowerblue", lw=lw, label="Log loss") | |
plt.plot( | |
xx, | |
np.where(xx < 1, 1 - xx, 0) ** 2, | |
color="orange", | |
lw=lw, | |
label="Squared hinge loss", | |
) | |
plt.plot( | |
xx, | |
modified_huber_loss(xx, 1), | |
color="darkorchid", | |
lw=lw, | |
linestyle="--", | |
label="Modified Huber loss", | |
) | |
plt.ylim((0, 8)) | |
plt.legend(loc="upper right") | |
plt.xlabel(r"Decision function $f(x)$") | |
plt.ylabel("$L(y=1, f(x))$") | |
return fig | |
title = "SGD convex loss functions" | |
# def greet(name): | |
# return "Hello " + name + "!" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"# {title}") | |
gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html#sphx-glr-auto-examples-linear-model-plot-sgd-loss-functions-py)**") | |
btn = gr.Button(value="SGD convex loss functions") | |
btn.click(plot_loss_func, outputs= gr.Plot() ) # | |
demo.launch() | |