File size: 4,451 Bytes
f1c2119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c95071
 
 
f1c2119
 
7c95071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1c2119
7c95071
f1c2119
7c95071
 
f1c2119
 
 
7c95071
 
 
f1c2119
7c95071
 
 
 
f1c2119
 
7c95071
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr


def modified_huber_loss(y_true, y_pred):
    z = y_pred * y_true
    loss = -4 * z
    loss[z >= -1] = (1 - z[z >= -1]) ** 2
    loss[z >= 1.0] = 0
    return loss


def plot_loss_func():
  xmin, xmax = -4, 4
  xx = np.linspace(xmin, xmax, 100)
  lw = 2
  plt.clf()

  fig = plt.figure(figsize=(10, 10), dpi=100)
  plt.plot([xmin, 0, 0, xmax], [1, 1, 0, 0], color="gold", lw=lw, label="Zero-one loss")
  plt.plot(xx, np.where(xx < 1, 1 - xx, 0), color="teal", lw=lw, label="Hinge loss")
  plt.plot(xx, -np.minimum(xx, 0), color="yellowgreen", lw=lw, label="Perceptron loss")
  plt.plot(xx, np.log2(1 + np.exp(-xx)), color="cornflowerblue", lw=lw, label="Log loss")
  plt.plot(
      xx,
      np.where(xx < 1, 1 - xx, 0) ** 2,
      color="orange",
      lw=lw,
      label="Squared hinge loss",
  )
  plt.plot(
      xx,
      modified_huber_loss(xx, 1),
      color="darkorchid",
      lw=lw,
      linestyle="--",
      label="Modified Huber loss",
  )
  plt.ylim((0, 8))
  plt.legend(loc="upper right")
  plt.xlabel(r"Decision function $f(x)$")
  plt.ylabel("$L(y=1, f(x))$")
  return fig




title = "SGD convex loss functions"

detail = "This plot shows the convex loss functions supported by SGDClassifiers(Linear classifiers (SVM, logistic regression, etc.) with SGD training)."

def explain(name):
    # print("name=",name)
    if name == "0-1 loss":
      docstr = "Explanation for " + name + ": " +\
                " This is the simplest loss function used in classification problems. It counts how many mistakes a hypothesis function makes on a training set. " +\
                " A loss of 1 is accounted if its mispredicted and a loss of 0 for the correct prediction. " +\
                " This function is non differentiable and hence not used in Optimization problems. "
    elif name == "Hinge loss":
      docstr = "Explanation for " + name + ": " +\
                " This is the loss function used in maximum-margin classification in SVMs. "+\
                " Z_i = y_i*(w.T * x_i + b), if Z_i > 0 the point x_i is correctly classified and Z_i < 0 , x_i is incorrectly classified "+\
                " Z_i >= 1, hinge loss =0 , Z_i < 1 , hinge loss = 1- Z_i "
    elif name == "Perceptron loss":
      docstr = "Explanation for " + name + ": " +\
                " This is the linear loss function used in perceptron algorithm. "+\
                " The binary classifier function which decides whether the input represented by vector of numbers belongs to a class or not. "

    elif name == "Squared Hinge loss":
      docstr = "Explanation for " + name + ":" +\
                " This represents the square verison of Hinge loss and used in classification algorithms where Performance is important. "+\
                " If we want a more fine decision boundary where we want to punish larger errors more significantly than the smaller errors. "
    
    elif name == "Modified Huber loss":
      docstr = "Explanation for " + name + ":" +\
                " The Huber loss function balances the best of both Mean Squared Error and Mean Absolute Error. "+\
                " Its a piecewise function and hyper parameter delta is to be found first and then loss optimization step."
    
    else:
      docstr = " Logistic Loss is a loss function used for Logistic Regression. Please refer wikipedia for the Log loss equation." +\
                " L2 regularization is most important for logistic regression models. "
    

    return docstr 



with gr.Blocks(title=title) as demo:
  
    gr.Markdown(f"# {title}")
    gr.Markdown(f"# {detail}")
    

    gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_loss_functions.html#sphx-glr-auto-examples-linear-model-plot-sgd-loss-functions-py)**")

    with gr.Column(variant="panel"):
        btn = gr.Button(value="SGD convex loss functions")
        btn.click(plot_loss_func, outputs= gr.Plot() ) # 

        dd = gr.Dropdown(["0-1 loss", "Hinge loss", "Perceptron loss", "Squared Hinge loss", "Modified Huber loss", "Log Loss"], label="loss", info="Select a Loss from the dropdown for a detailed explanation")
        # inp = gr.Textbox(placeholder="Select a Loss from the dropdown for a detailed explanation")
        out = gr.Textbox(label="explanation of the loss function")
        dd.change(explain, dd, out)
    

demo.launch()