Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
6 |
+
from sklearn.model_selection import KFold
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.metrics import log_loss
|
9 |
+
|
10 |
+
from scipy.special import expit
|
11 |
+
|
12 |
+
theme = gr.themes.Monochrome(
|
13 |
+
primary_hue="indigo",
|
14 |
+
secondary_hue="blue",
|
15 |
+
neutral_hue="slate",
|
16 |
+
)
|
17 |
+
model_card = f"""
|
18 |
+
## Description
|
19 |
+
|
20 |
+
The **Out-of-bag (OOB)** method is a useful technique for estimating the optimal number of boosting iterations.
|
21 |
+
This method is similar to cross-validation, but it does not require repeated model fitting and can be computed on-the-fly.
|
22 |
+
**OOB** estimates are only applicable to Stochastic Gradient Boosting (i.e., subsample < 1.0). They are calculated from the improvement in loss based on examples not included in the bootstrap sample (i.e., out-of-bag examples).
|
23 |
+
The **OOB** estimator provides a conservative estimate of the true test loss, but is still a reasonable approximation for a small number of trees.
|
24 |
+
This demo shows the negative OOB improvements' cumulative sum as a function of the boosting iteration.
|
25 |
+
|
26 |
+
## Dataset
|
27 |
+
|
28 |
+
Simulation data
|
29 |
+
"""
|
30 |
+
|
31 |
+
def do_train(n_samples, n_splits, random_seed):
|
32 |
+
# Generate data (adapted from G. Ridgeway's gbm example)
|
33 |
+
random_state = np.random.RandomState(random_seed)
|
34 |
+
x1 = random_state.uniform(size=n_samples)
|
35 |
+
x2 = random_state.uniform(size=n_samples)
|
36 |
+
x3 = random_state.randint(0, 4, size=n_samples)
|
37 |
+
|
38 |
+
p = expit(np.sin(3 * x1) - 4 * x2 + x3)
|
39 |
+
y = random_state.binomial(1, p, size=n_samples)
|
40 |
+
|
41 |
+
X = np.c_[x1, x2, x3]
|
42 |
+
|
43 |
+
X = X.astype(np.float32)
|
44 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=random_seed)
|
45 |
+
|
46 |
+
# Fit classifier with out-of-bag estimates
|
47 |
+
params = {
|
48 |
+
"n_estimators": 1200,
|
49 |
+
"max_depth": 3,
|
50 |
+
"subsample": 0.5,
|
51 |
+
"learning_rate": 0.01,
|
52 |
+
"min_samples_leaf": 1,
|
53 |
+
"random_state": random_seed,
|
54 |
+
}
|
55 |
+
clf = GradientBoostingClassifier(**params)
|
56 |
+
|
57 |
+
clf.fit(X_train, y_train)
|
58 |
+
train_acc = clf.score(X_train, y_train)
|
59 |
+
test_acc = clf.score(X_test, y_test)
|
60 |
+
text = f"Train set accuracy: {train_acc*100:.2f}%. Test set accuracy: {test_acc*100:.2f}%"
|
61 |
+
n_estimators = params["n_estimators"]
|
62 |
+
x = np.arange(n_estimators) + 1
|
63 |
+
|
64 |
+
def heldout_score(clf, X_test, y_test):
|
65 |
+
"""compute deviance scores on ``X_test`` and ``y_test``."""
|
66 |
+
score = np.zeros((n_estimators,), dtype=np.float64)
|
67 |
+
for i, y_proba in enumerate(clf.staged_predict_proba(X_test)):
|
68 |
+
score[i] = 2 * log_loss(y_test, y_proba[:, 1])
|
69 |
+
return score
|
70 |
+
|
71 |
+
def cv_estimate(n_splits):
|
72 |
+
cv = KFold(n_splits=n_splits)
|
73 |
+
cv_clf = GradientBoostingClassifier(**params)
|
74 |
+
val_scores = np.zeros((n_estimators,), dtype=np.float64)
|
75 |
+
for train, test in cv.split(X_train, y_train):
|
76 |
+
cv_clf.fit(X_train[train], y_train[train])
|
77 |
+
val_scores += heldout_score(cv_clf, X_train[test], y_train[test])
|
78 |
+
val_scores /= n_splits
|
79 |
+
return val_scores
|
80 |
+
|
81 |
+
# Estimate best n_splits using cross-validation
|
82 |
+
cv_score = cv_estimate(n_splits)
|
83 |
+
|
84 |
+
# Compute best n_splits for test data
|
85 |
+
test_score = heldout_score(clf, X_test, y_test)
|
86 |
+
|
87 |
+
# negative cumulative sum of oob improvements
|
88 |
+
cumsum = -np.cumsum(clf.oob_improvement_)
|
89 |
+
|
90 |
+
# min loss according to OOB
|
91 |
+
oob_best_iter = x[np.argmin(cumsum)]
|
92 |
+
|
93 |
+
# min loss according to test (normalize such that first loss is 0)
|
94 |
+
test_score -= test_score[0]
|
95 |
+
test_best_iter = x[np.argmin(test_score)]
|
96 |
+
|
97 |
+
# min loss according to cv (normalize such that first loss is 0)
|
98 |
+
cv_score -= cv_score[0]
|
99 |
+
cv_best_iter = x[np.argmin(cv_score)]
|
100 |
+
|
101 |
+
# color brew for the three curves
|
102 |
+
oob_color = list(map(lambda x: x / 256.0, (190, 174, 212)))
|
103 |
+
test_color = list(map(lambda x: x / 256.0, (127, 201, 127)))
|
104 |
+
cv_color = list(map(lambda x: x / 256.0, (253, 192, 134)))
|
105 |
+
|
106 |
+
# line type for the three curves
|
107 |
+
oob_line = "dashed"
|
108 |
+
test_line = "solid"
|
109 |
+
cv_line = "dashdot"
|
110 |
+
|
111 |
+
# plot curves and vertical lines for best iterations
|
112 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
113 |
+
ax.plot(x, cumsum, label="OOB loss", color=oob_color, linestyle=oob_line)
|
114 |
+
ax.plot(x, test_score, label="Test loss", color=test_color, linestyle=test_line)
|
115 |
+
ax.plot(x, cv_score, label="CV loss", color=cv_color, linestyle=cv_line)
|
116 |
+
ax.axvline(x=oob_best_iter, color=oob_color, linestyle=oob_line)
|
117 |
+
ax.axvline(x=test_best_iter, color=test_color, linestyle=test_line)
|
118 |
+
ax.axvline(x=cv_best_iter, color=cv_color, linestyle=cv_line)
|
119 |
+
|
120 |
+
# add three vertical lines to xticks
|
121 |
+
xticks = plt.xticks()
|
122 |
+
xticks_pos = np.array(
|
123 |
+
xticks[0].tolist() + [oob_best_iter, cv_best_iter, test_best_iter]
|
124 |
+
)
|
125 |
+
xticks_label = np.array(list(map(lambda t: int(t), xticks[0])) + ["OOB", "CV", "Test"])
|
126 |
+
ind = np.argsort(xticks_pos)
|
127 |
+
xticks_pos = xticks_pos[ind]
|
128 |
+
xticks_label = xticks_label[ind]
|
129 |
+
ax.set_xticks(xticks_pos, xticks_label, rotation=90)
|
130 |
+
|
131 |
+
ax.legend(loc="upper center")
|
132 |
+
ax.set_ylabel("normalized loss")
|
133 |
+
ax.set_xlabel("number of iterations")
|
134 |
+
return fig, text
|
135 |
+
|
136 |
+
|
137 |
+
with gr.Blocks(theme=theme) as demo:
|
138 |
+
gr.Markdown('''
|
139 |
+
<div>
|
140 |
+
<h1 style='text-align: center'>Gradient Boosting Out-of-Bag estimates</h1>
|
141 |
+
</div>
|
142 |
+
''')
|
143 |
+
gr.Markdown(model_card)
|
144 |
+
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_oob.html#sphx-glr-auto-examples-ensemble-plot-gradient-boosting-oob-py\">scikit-learn</a>")
|
145 |
+
n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples")
|
146 |
+
n_splits = gr.Slider(minimum=2, maximum=10, step=1, value=3, label="Number of cross validation folds")
|
147 |
+
random_seed = gr.Slider(minimum=0, maximum=2000, step=1, value=0, label="Random seed")
|
148 |
+
|
149 |
+
with gr.Row():
|
150 |
+
with gr.Column():
|
151 |
+
plot = gr.Plot()
|
152 |
+
with gr.Column():
|
153 |
+
result = gr.Textbox(label="Resusts")
|
154 |
+
|
155 |
+
n_samples.change(fn=do_train, inputs=[n_samples, n_splits, random_seed], outputs=[plot, result])
|
156 |
+
n_splits.change(fn=do_train, inputs=[n_samples, n_splits, random_seed], outputs=[plot, result])
|
157 |
+
random_seed.change(fn=do_train, inputs=[n_samples, n_splits, random_seed], outputs=[plot, result])
|
158 |
+
|
159 |
+
demo.launch()
|