import gradio as gr import time import numpy as np import matplotlib.pyplot as plt from scipy.linalg import toeplitz, cholesky from sklearn.covariance import LedoitWolf, OAS np.random.seed(0) def plot_mse(min_slider_samples_range,max_slider_samples_range): # plot MSE print("inside plot_mse") plt.clf() plt.subplot(2, 1, 1) plt.errorbar( slider_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label="Ledoit-Wolf", color="navy", lw=2, ) plt.errorbar( slider_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label="OAS", color="darkorange", lw=2, ) plt.ylabel("Squared error") plt.legend(loc="upper right") plt.title("Comparison of covariance estimators") plt.xlim(5, 31) print("outside plot_mse") return plt def plot_shrinkage(min_slider_samples_range,max_slider_samples_range): # plot shrinkage coefficient print("inside plot_shrink") plt.clf() plt.subplot(2, 1, 2) plt.errorbar( slider_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label="Ledoit-Wolf", color="navy", lw=2, ) plt.errorbar( slider_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label="OAS", color="darkorange", lw=2, ) plt.xlabel("n_samples") plt.ylabel("Shrinkage") plt.legend(loc="lower right") plt.ylim(plt.ylim()[0], 1.0 + (plt.ylim()[1] - plt.ylim()[0]) / 10.0) plt.xlim(5, 31) print("outside plot_shrink") # plt.show() return plt title = "Ledoit-Wolf vs OAS estimation" with gr.Blocks(title=title, theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo: gr.Markdown(f"# {title}") gr.Markdown( """ The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian. This example, inspired from Chen’s publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data. [1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. """) n_features = 100 min_slider_samples_range = gr.Slider(6, 31, value=6, step=1, label="min_samples_range", info="Choose between 6 and 31") max_slider_samples_range = gr.Slider(6, 31, value=31, step=1, label="max_samples_range", info="Choose between 6 and 31") print("min_slider_samples_range=",min_slider_samples_range.value) print("max_slider_samples_range=",max_slider_samples_range.value) low = min_slider_samples_range.value high = max_slider_samples_range.value ###### initialisation code slider_samples_range =np.arange(low, high,1) n_features = 100 repeat = 100 lw_mse = np.zeros((slider_samples_range.size, repeat)) oa_mse = np.zeros((slider_samples_range.size, repeat)) lw_shrinkage = np.zeros((slider_samples_range.size, repeat)) oa_shrinkage = np.zeros((slider_samples_range.size, repeat)) r = 0.1 real_cov = toeplitz(r ** np.arange(n_features)) coloring_matrix = cholesky(real_cov) for i, n_samples in enumerate(slider_samples_range): for j in range(repeat): X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X) lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) lw_shrinkage[i, j] = lw.shrinkage_ oa = OAS(store_precision=False, assume_centered=True) oa.fit(X) oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) oa_shrinkage[i, j] = oa.shrinkage_ gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/covariance/plot_lw_vs_oas.html)**") gr.Markdown("Changing the min_samples_range values and the MSE plot changes") gr.Markdown("Changing the max_samples_range values and the Shrinkage plot changes") gr.Label(value="Comparison of Covariance Estimators") min_slider_samples_range.change(plot_mse, inputs=[min_slider_samples_range,max_slider_samples_range], outputs= gr.Plot() ) max_slider_samples_range.change(plot_shrinkage, inputs=[min_slider_samples_range,max_slider_samples_range], outputs= gr.Plot() ) demo.launch()