Jayabalambika
commited on
Commit
·
ed7fafe
1
Parent(s):
53584da
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from time import time
|
3 |
+
from scipy import sparse
|
4 |
+
from scipy import linalg
|
5 |
+
|
6 |
+
from sklearn.datasets import make_regression
|
7 |
+
from sklearn.linear_model import Lasso
|
8 |
+
|
9 |
+
|
10 |
+
def load_dataset():
|
11 |
+
X, y = make_regression(n_samples=200, n_features=5000, random_state=0)
|
12 |
+
# create a copy of X in sparse format
|
13 |
+
X_sp = sparse.coo_matrix(X)
|
14 |
+
return X,X_sp,y
|
15 |
+
|
16 |
+
def compare_lasso_dense():
|
17 |
+
alpha = 1
|
18 |
+
sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000)
|
19 |
+
dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000)
|
20 |
+
|
21 |
+
t0 = time()
|
22 |
+
sparse_lasso.fit(X_sp, y)
|
23 |
+
# print(f"Sparse Lasso done in {(time() - t0):.3f}s")
|
24 |
+
elapse1 = time() - t0
|
25 |
+
|
26 |
+
t0 = time()
|
27 |
+
dense_lasso.fit(X, y)
|
28 |
+
# print(f"Dense Lasso done in {(time() - t0):.3f}s")
|
29 |
+
elapse2 = time() - t0
|
30 |
+
|
31 |
+
# compare the regression coefficients
|
32 |
+
coeff_diff = linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)
|
33 |
+
# print(f"Distance between coefficients : {coeff_diff:.2e}")
|
34 |
+
return f"Sparse Lasso done in {(time() - t0):.3f}s\t\n" + f"Dense Lasso done in {(time() - t0):.3f}s\t\n" + f"Distance between coefficients : {coeff_diff:.2e}\t\n"
|
35 |
+
|
36 |
+
def compare_lasso_sparse():
|
37 |
+
# make a copy of the previous data
|
38 |
+
Xs = X.copy()
|
39 |
+
# make Xs sparse by replacing the values lower than 2.5 with 0s
|
40 |
+
Xs[Xs < 2.5] = 0.0
|
41 |
+
# create a copy of Xs in sparse format
|
42 |
+
Xs_sp = sparse.coo_matrix(Xs)
|
43 |
+
Xs_sp = Xs_sp.tocsc()
|
44 |
+
|
45 |
+
# compute the proportion of non-zero coefficient in the data matrix
|
46 |
+
print(f"Matrix density : {(Xs_sp.nnz / float(X.size) * 100):.3f}%")
|
47 |
+
matrix_density = Xs_sp.nnz / float(X.size) * 100
|
48 |
+
|
49 |
+
alpha = 0.1
|
50 |
+
sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000)
|
51 |
+
dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000)
|
52 |
+
|
53 |
+
t0 = time()
|
54 |
+
sparse_lasso.fit(Xs_sp, y)
|
55 |
+
print(f"Sparse Lasso done in {(time() - t0):.3f}s")
|
56 |
+
elapses1 = time() - t0
|
57 |
+
|
58 |
+
t0 = time()
|
59 |
+
dense_lasso.fit(Xs, y)
|
60 |
+
print(f"Dense Lasso done in {(time() - t0):.3f}s")
|
61 |
+
elapses2 = time() - t0
|
62 |
+
|
63 |
+
# compare the regression coefficients
|
64 |
+
coeff_diff = linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)
|
65 |
+
print(f"Distance between coefficients : {coeff_diff:.2e}")
|
66 |
+
return f"Matrix density : {(Xs_sp.nnz / float(X.size) * 100):.3f}%\t\n"+ f"Sparse Lasso done in {(time() - t0):.3f}s\t\n" + f"Distance between coefficients : {coeff_diff:.2e}\t\n"
|
67 |
+
|
68 |
+
|
69 |
+
X,X_sp,y = load_dataset()
|
70 |
+
# compare_lasso_dense(X,X_sp,y)
|
71 |
+
# compare_lasso_sparse(X,X_sp,y)
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
title = " Lasso on Dense and Sparse data "
|
76 |
+
info = '''**Comparing the two Lasso implementations on Dense data**
|
77 |
+
We create a linear regression problem that is suitable for the Lasso, that is to say, with more features than samples.
|
78 |
+
We then store the data matrix in both dense (the usual) and sparse format, and train a Lasso on each. We compute the
|
79 |
+
runtime of both and check that they learned the same model by
|
80 |
+
computing the Euclidean norm of the difference between the coefficients they learned.
|
81 |
+
Because the data is dense, we expect better runtime with a dense data format.
|
82 |
+
'''
|
83 |
+
|
84 |
+
info2='''***Comparing the two Lasso implementations on Sparse data***
|
85 |
+
We make the previous problem sparse by replacing all small values with 0
|
86 |
+
and run the same comparisons as above. Because the data is now sparse,
|
87 |
+
we expect the implementation that uses the sparse data format to be faster.
|
88 |
+
'''
|
89 |
+
|
90 |
+
conclusion = '''**We show that linear_model.Lasso provides
|
91 |
+
the same results for dense and sparse data
|
92 |
+
and that in the case of sparse data the speed is improved**.
|
93 |
+
'''
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
gr.Markdown(f"# {title}")
|
96 |
+
gr.Markdown(info)
|
97 |
+
|
98 |
+
txt_3 = gr.Textbox(value="", label="Dense Lasso comparison")
|
99 |
+
btn = gr.Button(value="Dense Lasso comparison")
|
100 |
+
btn.click(compare_lasso_dense, outputs=[txt_3])
|
101 |
+
|
102 |
+
gr.Markdown(info2)
|
103 |
+
|
104 |
+
txt_4 = gr.Textbox(value="", label="Sparse Lasso comparison")
|
105 |
+
btn = gr.Button(value="Sparse Lasso comparison")
|
106 |
+
btn.click(compare_lasso_sparse, outputs=[txt_4])
|
107 |
+
|
108 |
+
gr.Markdown(conclusion)
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
demo.launch()
|