Jayabalambika commited on
Commit
a5bbc1e
·
1 Parent(s): 47fd88d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -63,7 +63,7 @@ def compare_lasso_sparse():
63
  # compare the regression coefficients
64
  coeff_diff = linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)
65
  print(f"Distance between coefficients : {coeff_diff:.2e}")
66
- return return f"Matrix density : {(Xs_sp.nnz / float(X.size) * 100):.3f}%\t\n"+ f"Sparse Lasso done in {(time() - t0):.3f}s\t\n" + f"Dense Lasso done in {(time() - t0):.3f}s\t\n" + f"Distance between coefficients : {coeff_diff:.2e}\t\n"
67
 
68
 
69
  X,X_sp,y = load_dataset()
@@ -87,9 +87,8 @@ and run the same comparisons as above. Because the data is now sparse,
87
  we expect the implementation that uses the sparse data format to be faster.
88
  '''
89
 
90
- conclusion = '''**We show that linear_model.Lasso provides
91
- the same results for dense and sparse data
92
- and that in the case of sparse data the speed is improved**.
93
  '''
94
  with gr.Blocks() as demo:
95
  gr.Markdown(f"# {title}")
 
63
  # compare the regression coefficients
64
  coeff_diff = linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)
65
  print(f"Distance between coefficients : {coeff_diff:.2e}")
66
+ return f"Matrix density : {(Xs_sp.nnz / float(X.size) * 100):.3f}%\t\n"+ f"Sparse Lasso done in {(time() - t0):.3f}s\t\n" + f"Dense Lasso done in {(time() - t0):.3f}s\t\n" + f"Distance between coefficients : {coeff_diff:.2e}\t\n"
67
 
68
 
69
  X,X_sp,y = load_dataset()
 
87
  we expect the implementation that uses the sparse data format to be faster.
88
  '''
89
 
90
+ conclusion = '''**Conclusion**
91
+ We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved**.
 
92
  '''
93
  with gr.Blocks() as demo:
94
  gr.Markdown(f"# {title}")