Jayabalambika commited on
Commit
776c009
Β·
1 Parent(s): f4d3ff0

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -130
app.py DELETED
@@ -1,130 +0,0 @@
1
- import os
2
-
3
- import pandas as pd
4
- from sklearn.ensemble import IsolationForest
5
-
6
- import numpy as np
7
- from sklearn.model_selection import train_test_split
8
- import gradio as gr
9
- import matplotlib.pyplot as plt
10
- from skops import hub_utils
11
- import pickle
12
- import time
13
-
14
-
15
-
16
- #Data preparation
17
- n_samples, n_outliers = 120, 40
18
- rng = np.random.RandomState(0)
19
- covariance = np.array([[0.5, -0.1], [0.7, 0.4]])
20
- cluster_1 = 0.4 * rng.randn(n_samples, 2) @ covariance + np.array([2, 2]) # general deformed cluster
21
- cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2]) # spherical cluster
22
- outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2))
23
-
24
- X = np.concatenate([cluster_1, cluster_2, outliers]) #120+120+40 = 280 with 2D
25
- y = np.concatenate(
26
- [np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)]
27
- )
28
-
29
- def load_hf_model_hub():
30
- '''
31
- Load the directory containing pretrained model
32
- and files from the model repository
33
- '''
34
- repo_id="sklearn-docs/anomaly-detection"
35
- download_repo = "downloaded-model"
36
- hub_utils.download(repo_id=repo_id, dst=download_repo)
37
- time.sleep(2)
38
- loaded_model = pickle.load(open('./downloaded-model/isolation_forest.pkl', 'rb'))
39
- return loaded_model
40
-
41
- #Visualize the data as a scatter plot
42
-
43
- def visualize_input_data():
44
- fig = plt.figure(1, facecolor="w", figsize=(5, 5))
45
- scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
46
- handles, labels = scatter.legend_elements()
47
- plt.axis("square")
48
- plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
49
- plt.title("Gaussian inliers with \nuniformly distributed outliers")
50
- return fig
51
-
52
-
53
-
54
-
55
-
56
- title = " An example using IsolationForest for anomaly detection."
57
- description1 = "The isolation forest is an Ensemble of Isolation trees and it isolates the data points using recursive random partitioning."
58
- description2 = "In case of outliers the number of splits required is greater than those required for inliers."
59
- description3 = "We will use the toy dataset as given in the scikit-learn page for Isolation Forest."
60
-
61
- with gr.Blocks(title=title) as demo:
62
-
63
- gr.Markdown(f" # {title}")
64
- gr.Markdown(
65
- """
66
- The isolation forest is an ensemble of isolation trees and it isolates the data points using recursive random partitioning.
67
- In case of outliers, the number of splits required is greater than those required for inliers.
68
- We will use the toy dataset for our educational demo as given in the scikit-learn page for Isolation Forest.
69
-
70
- """)
71
-
72
- gr.Markdown("You can see the associated scikit-learn example [here](https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py).")
73
-
74
- loaded_model = load_hf_model_hub()
75
-
76
- with gr.Tab("Visualize Input dataset"):
77
- btn = gr.Button(value="Visualize input dataset")
78
- with gr.Row():
79
-
80
- btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
81
- # out = gr.Textbox(label="explaination of the loss function")
82
- gr.Markdown(
83
- """
84
- # Data Generation
85
- We generate 2 clusters one spherical and the other slightly deformed, from Standard Normal distribution
86
- For the sake of consistency inliers are assigned a ground label of 1 and outliers are assigned a label -1.
87
- The plot is a visualization of the clusters of the input dataset.
88
-
89
- """)
90
-
91
- with gr.Tab("**Plot Decision Boundary**"):
92
- # btn_decision = gr.Button(value="Plot decision boundary")
93
- # btn_decision.click(plot_decision_boundary, outputs= gr.Plot(label='Plot decision boundary') )
94
- with gr.Row():
95
- image_decision = gr.Image('./downloaded-model/decision_boundary.png')
96
- gr.Markdown(
97
- """
98
- # Plot the Discrete Decision Boundary
99
- We plot the discrete decision boundary.
100
- The background colour represents whether a sample in that given area is predicted to be an outlier or not.
101
- The scatter plot displays the true labels
102
-
103
- """)
104
-
105
- with gr.Tab("Plot Path"):
106
- with gr.Row():
107
- image_path = gr.Image('./downloaded-model/plot_path.png')
108
- gr.Markdown(
109
- """
110
- # Plot the path length of the decision boundary
111
- By setting the response_method="decision_function", the background of the DecisionBoundaryDisplay represents
112
- the measure of the normality of an observation.
113
-
114
- Normality of Observation = path length/(Number_of_forests_of_random trees) - Eqn.1
115
-
116
-
117
- The RHS of the above equation Eqn.1 is given by the number of splits required to isolate a given sample
118
- Such score is given by the path length averaged over a forest of random trees, which itself is given by the depth of
119
- the leaf (or equivalently the number of splits)
120
- required to isolate a given sample.
121
-
122
- When a forest of random trees collectively produces short path lengths for isolating some particular samples,
123
- they are highly likely to be anomalies and the measure of normality is close to 0.
124
- Similarly, large paths correspond to values close to 1 and are more likely to be inliers.
125
-
126
- """)
127
-
128
-
129
- gr.Markdown( f"## Success")
130
- demo.launch()